Laser & Optoelectronics Progress, Volume. 60, Issue 16, 1600004(2023)

Research of Infrared Dim and Small Target Detection Algorithms Based on Low-Rank and Sparse Decomposition

Junhai Luo* and Hang Yu
Author Affiliations
  • School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
  • show less
    Figures & Tables(12)
    Vectorization of patch image
    Construction of patch tensor
    Constraints of background component
    Construction of holistic spatial-temporal tensor
    Construction of spatial-temporal patch tensor
    Detection results
    • Table 1. Comparison of background component constraints

      View table

      Table 1. Comparison of background component constraints

      ReferenceConstraints of background componentsPublish yearConstraint term
      15Low-rank constraints of background patch image2013Nuclear norm
      162017Partial sum of singular values
      172018Weighted nuclear norm
      192018γ norm
      212019Schatten 1/2 norm
      25Low-rank constraints of background tensor2019Tensor nuclear norm
      282019Partial sum of tensor nuclear norm
      33nonconvex tensor rank surrogate via Laplace function
      302018Weighted tensor nuclear norm
      312019Weighted Schatten p norm
      362022Improved tensor nuclear norm
      382021METTR norm
      222017Sum of nuclear norm
      40Total variation constraints2017Isotropic total variation
      412020Tensor nonlocal total variation
      422022Hyper total variation
      4420193D anisotropic total variation
    • Table 2. Comparison of target component constraints

      View table

      Table 2. Comparison of target component constraints

      ReferenceConstraints of target componentPublish yearSparse constraints term /methods for extracting prior
      16Sparse constraints of target component2017L1 norm with non-negative constraint
      192018Weighted L1 norm
      452018Weighted L1 norm
      462019Lp-Norm
      47Weighting factor for the target component2016Steering kernel
      482017Variation weighted information entropy
      492020Local image entropy
      412020Structure tensor
      502021Double window local contrast measure
      512022Structure tensor and direction derivative
      332020Local contrast energy
      362022Local visual saliency
    • Table 3. Comparison of joint temporal information constraints

      View table

      Table 3. Comparison of joint temporal information constraints

      ReferenceRepresentation of infrared imagePublish yearUtilization of temporal information
      52Matrix2020temporal extension of sequence image and temporal low-rank and sparse decomposition
      532019Spatial-temporal patch image
      542016Temporal consistency constraint for target component
      552022Temporal consistency constraint for target component
      56Tensor2020holistic spatial-temporal tensor
      572020spatial-temporal patch tensor
      582022holistic spatial-temporal tensor
      592022non-overlapping spatial-temporal patch tensor
    • Table 4. Comparison of GSCRG and FBSF

      View table

      Table 4. Comparison of GSCRG and FBSF

      AlgorithmScene 1Scene 2Scene 3Scene 4Scene 5
      GSCRGFBSFGSCRGFBSFGSCRGFBSFGSCRGFBSFGSCRGFBSF
      LCM2.190.4141.411.301.390.532.551.184.990.60
      Max_mean0.470.430.390.251.220.661.021.490.970.67
      IPI11.079.832.001.23infinfinfinf68.4435.12
      Nipps52.9035.3720.749.34infinf8.1326.43infinf
      NRAM37.8724.45infinfinfinfinfinfinfinf
      PSTNNinfinfinfinfinfinfinfinfinfinf
      ECA_STT19.0612.4358.5628.69391.38106.100.960.903.461.57
      RIPTinfinfinfinfinfinfinfinf13.196.19
      ASTTV_NTLAinfinfinfinfinfinf5.066.85389.68204.11
    • Table 5. Single frame computation time

      View table

      Table 5. Single frame computation time

      AlgorithmScene 1Scene 2Scene 3Scene 4Scene 5
      LCM00.160.800.150.160.15
      Max_mean0.0040.0130.0030.0030.005
      IPI4.7231.864.845.145.51
      Nipps11.82115.366.2312.6511.12
      NRAM1.9835.010.8911.541.91
      PSTNN0.273.000.550.640.69
      ECA_STT6.634.6040.617.107.14
      RIPT2.9814.992.193.825.5
      ASTTV_NTLA1.729.751.181.861.84
    • Table 6. Comparison of computational complexity

      View table

      Table 6. Comparison of computational complexity

      AlgorithmComputational complexity
      Max_meanO(MN)
      LCMO(K3MN)
      IPIO(mn2)
      NRAMO(mn2)
      NIPPSO(mn2)
      ECA_STTO(n1n2n3logn3+n1n22(n3+1)/2)
      RIPTO(n1n2n3(n1n2+n1n3+n2n3))
      PSTNNO(n1n2n3logn3+n1n22(n3+1)/2)
      ASTTV_NTLAO(n1n2n32logn3+n1n22(n1n2n32+1)/2)
    Tools

    Get Citation

    Copy Citation Text

    Junhai Luo, Hang Yu. Research of Infrared Dim and Small Target Detection Algorithms Based on Low-Rank and Sparse Decomposition[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1600004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jul. 15, 2022

    Accepted: Oct. 13, 2022

    Published Online: Aug. 15, 2023

    The Author Email: Luo Junhai (junhai_luo@uestc.edu.cn)

    DOI:10.3788/LOP222077

    Topics