Acta Photonica Sinica, Volume. 52, Issue 8, 0816002(2023)

Dielectric Properties and Interface Characteristics of ZrSSe,HfSSe and Their 2D Heterojunctions

Gonghe DU1, Xudong HU1, Qianwen YANG1, Yonggang XU1, Zhaoyu REN2, and Qiyi ZHAO1、*
Author Affiliations
  • 1School of Science,Xi'an University of Posts & Telecommunications,Xi'an 710121,China
  • 2Institute of Photonics & Photon-technology,Northwest University,Xi'an 710069,China
  • show less
    References(55)

    [1] K S NOVOSELOV, A K GEIM, S V MOROZOV et al. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004).

    [2] C WOOLSTON. Taking graphene out of the laboratory and into the real world. Nature, 590, 684-685(2021).

    [3] Xianxian SUN, Chuanjin HUANG, Lidong WANG et al. Recent progress in graphene/polymer nanocomposites. Advanced Materials, 33, 2001105(2021).

    [4] H KIM, Y CHOI, C LEWANDOWSKI et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature, 606, 494-500(2022).

    [5] A A BALANDIN. Phononics of graphene and related materials. ACS Nano, 14, 5170-5178(2020).

    [6] Yu WANG, Sisi LI, Haiyan YANG et al. Progress in the functional modification of graphene/graphene oxide: A review. RSC Advances, 10, 15328-15345(2020).

    [7] Ruiping LI, Yingchun CHENG, Wei HUANG. Recent progress of Janus 2D transition metal chalcogenides: from theory to experiments. Small, 14, 1802091(2018).

    [8] Xiaobo LI, Chao CHEN, Yang YANG et al. 2D re-based transition metal chalcogenides: progress, challenges, and opportunities. Advanced Science, 7, 2002320(2020).

    [9] F H HSIAO, Chengchu CHUNG, C H CHIANG et al. Using exciton/trion dynamics to spatially monitor the catalytic activities of MoS2 during the hydrogen evolution reaction. ACS Nano, 16, 4298-4307(2022).

    [10] J YANG, A R MOHMAD, Yan WANG et al. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nature Materials, 18, 1309-1314(2019).

    [11] J CHERUSSERI, N CHOUDHARY, K S KUMAR et al. Recent trends in transition metal dichalcogenide based supercapacitor electrodes. Nanoscale Horizons, 4, 840-858(2019).

    [12] D VIKRAMAN, S HUSSAIN, I RABANI et al. Engineering MoTe2 and Janus SeMoTe nanosheet structures: first-principles roadmap and practical uses in hydrogen evolution reactions and symmetric supercapacitors. Nano Energy, 87, 106161(2021).

    [13] Jing WAN, Yang HAN, Yang SHI et al. Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries. Nature Communications, 10, 1-10(2019).

    [14] Jianbiao WANG, J OKABE, Y KOMINE et al. The optimized interface engineering of VS2 as cathodes for high performance all-solid-state lithium-ion battery. Science China Technological Sciences, 65, 1859-1866(2022).

    [15] Jianwei SU, Guiheng LIU, Lixin LIU et al. Recent advances in 2D group VB transition metal chalcogenides. Small, 17, 2005411(2021).

    [16] Yangping DUAN, Xia ZHAO, Miaomiao SUN et al. Research advances in the synthesis, application, assembly, and calculation of janus materials. Industrial & Engineering Chemistry Research, 60, 1071-1095(2021).

    [17] Aangyu LU, Hanyu ZHU, Jun XIAO et al. Janus monolayers of transition metal dichalcogenides. Nature Nanotechnology, 12, 744-749(2017).

    [18] Xiaoyong YANG, D SINGH, Zhitong XU et al. An emerging Janus MoSeTe material for potential applications in optoelectronic devices. Journal of Materials Chemistry C, 7, 12312-12320(2019).

    [19] A C RIIS-JENSEN, T DEILMANN, T OLSEN et al. Classifying the electronic and optical properties of Janus monolayers. ACS Nano, 13, 13354-13364(2019).

    [20] Congxin XIA, Wenqi XIONG, Juan DU et al. Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides. Physical Review B, 98, 165424(2018).

    [21] Jing ZHANG, Shuai JIA, I KHOLMANOV et al. Janus monolayer transition-metal dichalcogenides. ACS Nano, 11, 8192-8198(2017).

    [22] Wenjin YIN, Bo WEN, Gouzheng NIE et al. Tunable dipole and carrier mobility for a few layer Janus MoSSe structure. Journal of Materials Chemistry C, 6, 1693-1700(2018).

    [23] Rui PENG, Yandong MA, Shuai ZHANG et al. Valley polarization in Janus single-layer MoSSe via magnetic doping. The Journal of Physical Chemistry Letters, 9, 3612-3617(2018).

    [24] Jun WANG, Haibo SHU, Tianfeng ZHAO et al. Intriguing electronic and optical properties of two-dimensional Janus transition metal dichalcogenides. Physical Chemistry Chemical Physics, 20, 18571-18578(2018).

    [25] Hao JIN, Tao WANG, Zhirui GONG et al. Prediction of an extremely long exciton lifetime in a Janus-MoSTe monolayer. Nanoscale, 10, 19310-19315(2018).

    [26] Yan LIANG, Jianwei LI, Hao JIN et al. Photoexcitation dynamics in Janus-MoSSe/WSe2 heterobilayers: ab initio time-domain study. The Journal of Physical Chemistry Letters, 9, 2797-2802(2018).

    [27] Sandong GUO. Phonon transport in Janus monolayer MoSSe: a first-principles study. Physical Chemistry Chemical Physics, 20, 7236-7242(2018).

    [28] M YAGMURCUKARDES, Y QIN, S OZEN et al. Quantum properties and applications of 2D Janus crystals and their superlattices. Applied Physics Reviews, 7, 011311(2020).

    [29] A B MAGHIRANG, Z Q HUANG, R A B VILLAOS et al. Predicting two-dimensional topological phases in Janus materials by substitutional doping in transition metal dichalcogenide monolayers. npj 2D Materials and Applications, 3, 1-8(2019).

    [30] X W ZHAO, B QIU, G C HU et al. Transition-metal doping/adsorption induced valley polarization in Janus WSSe: first-principles calculations. Applied Surface Science, 490, 172-177(2019).

    [31] Liang DONG, Jun LOU, V B SHENOY. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano, 11, 8242-8248(2017).

    [32] M YAGMURCUKARDES, C SEVIK, F M PEETERS. Electronic, vibrational, elastic, and piezoelectric properties of monolayer Janus MoSTe phases: a first-principles study. Physical Review B, 100, 045415(2019).

    [33] Cui JIN, Xiao TANG, Xin TAN et al. A Janus MoSSe monolayer: a superior and strain-sensitive gas sensing material. Journal of Materials Chemistry A, 7, 1099-1106(2019).

    [34] Qiyi ZHAO, Yaohui GUO, Keyu SI et al. Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density‐functional theory. Physica Status Solidi (b), 254, 1700033(2017).

    [35] D SINGH, R AHUJA. Two-dimensional perovskite/HfS2 van der Waals heterostructure as an absorber material for photovoltaic applications. ACS Applied Energy Materials, 5, 2300-2307(2022).

    [36] Bicheng ZHU, Haiyan TAN, Jiajie FAN et al. Tuning the strength of built-in electric field in 2D/2D g-C3N4/SnS2 and g-C3N4/ZrS2 S-scheme heterojunctions by nonmetal doping. Journal of Materiomics, 7, 988-997(2021).

    [37] G KRESSE, J FURTHMÜLLER. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 15-50(1996).

    [38] G KRESSE, J FURTHMÜLLER. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169(1996).

    [39] P GIANNOZZI, S BARONI, N BONINI et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21, 395502(2009).

    [40] G KRESSE, D JOUBERT. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59, 1758(1999).

    [41] J P PERDEW, K BURKE, M ERNZERHOF. Generalized gradient approximation made simple. Physical Review Letters, 77, 3865(1996).

    [42] H J MONKHORST, J D PACK. Special points for Brillouin-zone integrations. Physical Review B, 13, 5188(1976).

    [43] M DION, H RYDBERG, E SCHRÖDER et al. Van der Waals density functional for general geometries. Physical Review Letters, 92, 246401(2004).

    [44] G ROMÁN-PÉREZ, J M SOLER. Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Physical Review Letters, 103, 096102(2009).

    [45] J KLIMEŠ, D R BOWLER, A MICHAELIDES. Van der Waals density functionals applied to solids. Physical Review B, 83, 195131(2011).

    [46] Sandong GUO, Yongfeng LI, Xiaoshu Guo. Predicted Janus monolayer ZrSSe with enhanced n-type thermoelectric properties compared with monolayer ZrS2. Computational Materials Science, 161, 16-23(2019).

    [47] D M HOAT, M NASERI, N N HIEU et al. A comprehensive investigation on electronic structure, optical and thermoelectric properties of the HfSSe Janus monolayer. Journal of Physics and Chemistry of Solids, 144, 109490(2020).

    [48] T V VU, H D TONG, D P TRAN et al. Electronic and optical properties of Janus ZrSSe by density functional theory. RSC Advances, 9, 41058-41065(2019).

    [49] J A DUFFY. Trends in energy gaps of binary compounds: an approach based upon electron transfer parameters from optical spectroscopy. Journal of Physics C: Solid State Physics, 13, 2979(1980).

    [50] A CARVALHO, R M RIBEIRO, A H C NETO. Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. Physical Review B, 88, 115205(2013).

    [51] Qiyi ZHAO, Yanhui GUO, Yixuan ZHOU et al. Flexible and anisotropic properties of monolayer MX2 (M= Tc and Re; X= S, Se). The Journal of Physical Chemistry C, 121, 23744-23751(2017).

    [52] M GAJDOŠ, K HUMMER, G KRESSE et al. Linear optical properties in the projector-augmented wave methodology. Physical Review B, 73, 045112(2006).

    [53] V LUCARINI, J J SAARINEN, K E PEIPONEN et al. Kramers-Kronig relations in optical materials research. Springer Science & Business Media(2005).

    [54] Ruichun LUO, Wenwu XU, Yongzheng ZHANG et al. Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold heterojunctions. Nature Communications, 11, 1-12(2020).

    [55] Wei HU, Jinlong YANG. First-principles study of two-dimensional van der Waals heterojunctions. Computational Materials Science, 112, 518-526(2016).

    Tools

    Get Citation

    Copy Citation Text

    Gonghe DU, Xudong HU, Qianwen YANG, Yonggang XU, Zhaoyu REN, Qiyi ZHAO. Dielectric Properties and Interface Characteristics of ZrSSe,HfSSe and Their 2D Heterojunctions[J]. Acta Photonica Sinica, 2023, 52(8): 0816002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 30, 2022

    Accepted: Mar. 29, 2023

    Published Online: Sep. 26, 2023

    The Author Email: ZHAO Qiyi (qiyi_xiyouphy@163.com)

    DOI:10.3788/gzxb20235208.0816002

    Topics