Opto-Electronic Engineering, Volume. 52, Issue 1, 240236(2025)

Remote sensing image road extraction by integrating ResNeSt and multi-scale feature fusion

Ming Hao*... He Bai and Tingting Xu |Show fewer author(s)
Author Affiliations
  • School of Information Engineering, Liaoning Institute of Science and Technology, Jinzhou, Liaoning 121000, China
  • show less
    References(22)

    [1] B Huang, B Zhao, Y M Song. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sens Environ, 214, 73-86(2018).

    [2] Y X Xu, H Chen, C Du et al. MSACon: mining spatial attention-based contextual information for road extraction. IEEE Trans Geosci Remote Sens, 60, 5604317(2022).

    [3] Z J Xiao, J H Zhang, B H Lin. Feature coordination and fine-grained perception of small targets in remote sensing images. Opto-Electron Eng, 51, 240066(2024).

    [4] L M Liang, K Q Chen, C B Wang et al. Remote sensing image detection algorithm integrating visual center mechanism and parallel patch perception. Opto-Electron Eng, 51, 240099(2024).

    [5] Q Q Yuan, H F Shen, T W Li et al. Deep learning in environmental remote sensing: achievements and challenges. Remote Sens Environ, 241, 111716(2020).

    [6] Q Q Zhu, Y A Zhang, L Z Wang et al. A global context-aware and batch-independent network for road extraction from VHR satellite imagery. ISPRS J Photogramm Remote Sens, 175, 353-365(2021).

    [7] D He, Q Shi, X P Liu et al. Generating 2 m fine-scale urban tree cover product over 34 metropolises in China based on deep context-aware sub-pixel mapping network. Int J Appl Earth Obs Geoinf, 106, 102667(2022).

    [8] N Lin, X Q Zhang, L Wang et al. Road extraction from remote sensing images based on dilated convolutions U-Net. Sci Surv Mapp, 46, 109-114,156(2021).

    [9] J L Yang, X J Guo, Z H Chen. Road extraction method from remote sensing images based on improved U-Net network. J Image Graph, 26, 3005-3014(2021).

    [10] M Shafiq, Z Q Gu. Deep residual learning for image recognition: a survey. Appl Sci, 12, 8972(2022).

    [12] Z X Zhang, Q J Liu, Y H Wang. Road extraction by deep residual U-Net. IEEE Geosci Remote Sens Lett, 15, 749-753(2018).

    [14] Z Zhang, Z Chen, C Liu. Road extraction technology from remote sensing images based on LinkNet and feature aggregation module. China Science and Technology Information, 672, 116-119(2022).

    [15] L P Gao, J Y Wang, Q X Wang et al. Road extraction using a dual attention dilated-LinkNet based on satellite images and floating vehicle trajectory data. IEEE J Sel Top Appl Earth Obs Remote Sens, 14, 10428-10438(2021).

    [17] Y Cui, Z K Yu, J C Han et al. Dual-triple attention network for hyperspectral image classification using limited training samples. IEEE Geosci Remote Sens Lett, 19, 5504705(2022).

    [19] F I Diakogiannis, F Waldner, P Caccetta et al. ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data. ISPRS J Photogramm Remote Sens, 162, 94-114(2020).

    [20] Y Wang, Y X Peng, W Li et al. DDU-Net: dual-decoder-U-Net for road extraction using high-resolution remote sensing images. IEEE Trans Geosci Remote Sens, 60, 4412612(2022).

    [21] X B Qin, Z C Zhang, C Y Huang et al. U2-Net: going deeper with nested U-structure for salient object detection. Pattern Recognit, 106, 107404(2020).

    Tools

    Get Citation

    Copy Citation Text

    Ming Hao, He Bai, Tingting Xu. Remote sensing image road extraction by integrating ResNeSt and multi-scale feature fusion[J]. Opto-Electronic Engineering, 2025, 52(1): 240236

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Oct. 9, 2024

    Accepted: Dec. 16, 2024

    Published Online: Feb. 21, 2025

    The Author Email: Hao Ming (郝明)

    DOI:10.12086/oee.2025.240236

    Topics