Opto-Electronic Engineering, Volume. 52, Issue 1, 240236(2025)
Remote sensing image road extraction by integrating ResNeSt and multi-scale feature fusion
[1] B Huang, B Zhao, Y M Song. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sens Environ, 214, 73-86(2018).
[2] Y X Xu, H Chen, C Du et al. MSACon: mining spatial attention-based contextual information for road extraction. IEEE Trans Geosci Remote Sens, 60, 5604317(2022).
[3] Z J Xiao, J H Zhang, B H Lin. Feature coordination and fine-grained perception of small targets in remote sensing images. Opto-Electron Eng, 51, 240066(2024).
[4] L M Liang, K Q Chen, C B Wang et al. Remote sensing image detection algorithm integrating visual center mechanism and parallel patch perception. Opto-Electron Eng, 51, 240099(2024).
[5] Q Q Yuan, H F Shen, T W Li et al. Deep learning in environmental remote sensing: achievements and challenges. Remote Sens Environ, 241, 111716(2020).
[6] Q Q Zhu, Y A Zhang, L Z Wang et al. A global context-aware and batch-independent network for road extraction from VHR satellite imagery. ISPRS J Photogramm Remote Sens, 175, 353-365(2021).
[7] D He, Q Shi, X P Liu et al. Generating 2 m fine-scale urban tree cover product over 34 metropolises in China based on deep context-aware sub-pixel mapping network. Int J Appl Earth Obs Geoinf, 106, 102667(2022).
[8] N Lin, X Q Zhang, L Wang et al. Road extraction from remote sensing images based on dilated convolutions U-Net. Sci Surv Mapp, 46, 109-114,156(2021).
[9] J L Yang, X J Guo, Z H Chen. Road extraction method from remote sensing images based on improved U-Net network. J Image Graph, 26, 3005-3014(2021).
[10] M Shafiq, Z Q Gu. Deep residual learning for image recognition: a survey. Appl Sci, 12, 8972(2022).
[12] Z X Zhang, Q J Liu, Y H Wang. Road extraction by deep residual U-Net. IEEE Geosci Remote Sens Lett, 15, 749-753(2018).
[14] Z Zhang, Z Chen, C Liu. Road extraction technology from remote sensing images based on LinkNet and feature aggregation module. China Science and Technology Information, 672, 116-119(2022).
[15] L P Gao, J Y Wang, Q X Wang et al. Road extraction using a dual attention dilated-LinkNet based on satellite images and floating vehicle trajectory data. IEEE J Sel Top Appl Earth Obs Remote Sens, 14, 10428-10438(2021).
[17] Y Cui, Z K Yu, J C Han et al. Dual-triple attention network for hyperspectral image classification using limited training samples. IEEE Geosci Remote Sens Lett, 19, 5504705(2022).
[19] F I Diakogiannis, F Waldner, P Caccetta et al. ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data. ISPRS J Photogramm Remote Sens, 162, 94-114(2020).
[20] Y Wang, Y X Peng, W Li et al. DDU-Net: dual-decoder-U-Net for road extraction using high-resolution remote sensing images. IEEE Trans Geosci Remote Sens, 60, 4412612(2022).
[21] X B Qin, Z C Zhang, C Y Huang et al. U2-Net: going deeper with nested U-structure for salient object detection. Pattern Recognit, 106, 107404(2020).
Get Citation
Copy Citation Text
Ming Hao, He Bai, Tingting Xu. Remote sensing image road extraction by integrating ResNeSt and multi-scale feature fusion[J]. Opto-Electronic Engineering, 2025, 52(1): 240236
Category: Article
Received: Oct. 9, 2024
Accepted: Dec. 16, 2024
Published Online: Feb. 21, 2025
The Author Email: Hao Ming (郝明)