Electro-Optic Technology Application, Volume. 37, Issue 4, 1(2022)

Compact Petawatt High-intensity Ultrashort Laser Facilities Progress (Invited)

CUI Can1,2, LIU Xu3, LI Sensen1,3, WANG Yue4, BAI Zhenxu1,2, WANG Yulei1,2, and LV Zhiwei1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(77)

    [1] [1] STRICKLAND D, MOUROU G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221.

    [2] [2] MOULTON P F. Spectroscopic and laser characteristics of Ti:Al2O3[J]. Journal of the Optical Society of America B, 1986, 3(1): 125-133.

    [3] [3] PERRY M D, PENNINGTON D, STUART B C, et al. Petawatt laser pulses[J]. Optics Letters, 1999, 24(3): 160-162.

    [4] [4] DANSON C N, BRUMMITT P A, CLARKE R J, et al. Vulcan Petawatt-an ultra-high-intensity interaction facility[J]. Nuclear Fusion, 2004, 44(12): S239-S246.

    [5] [5] ICUIL. ICUIL worldmap 2009, 2012&2020[EB/OL]. https://www.icuil.org/.

    [6] [6] LI S, YAN X. Research on mid-infrared laser source in laser countermeasure system and key technology [J]. Electro-optic Technology Application, 2018, 33(5): 19-23.

    [7] [7] CAI J, LI S. Analysis and measurement of beam quality of quantum cascade laser[J]. Electro-optic Technology Application, 2018, 33(3): 13-16.

    [8] [8] STUART B C, BONLIE J D, BRITTEN J A, et al. The Titan laser at LLNL[C]//Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies: Optica Publishing Group, 2006: JTuG3.

    [9] [9] DORRER C, CONSENTINO A, IRWIN D, et al. OPCPA front end and contrast optimization for the OMEGA EP kilojoule, picosecond laser[J]. Journal of Optics, 2015, 17(9): 094007.

    [10] [10] WANG Y, WANG S, ROCKWOOD A, et al. 0.85 PW laser operation at 3.3 Hz and high-contrast ultrahigh-intensity λ=?400?nm second-harmonic beamline[J]. Optics Letters, 2017, 42(19): 3828-3831.

    [11] [11] LEEMANS W, DANIELS J, DESHMUKH A, et al. Bella laser and operations[J]. Proc of PAC2013, 2013: 1097.

    [12] [12] GONSAlVES A J, NAKAMURA K, DANIELS J, et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide[J]. Physical Review Letters, 2019, 122(8): 084801.

    [13] [13] BAHK S W, ROUSSEAU P, PLANCHON T A, et al. Generation and characterization of the highest laser intensities (1022 W/cm2)[J]. Optics Letters, 2004, 29(24): 2837-2839.

    [14] [14] HOU B, NEES J, EASTER J, et al. MeV proton beams generated by 3 mJ ultrafast laser pulses at 0.5 kHz[J]. Applied Physics Letters, 2009, 95(10): 101503.

    [15] [15] GAUL E W, MARTINEZ M, BLAKENEY J, et al. Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier[J]. Applied Optics, 2010, 49(9): 1676-1681.

    [16] [16] FOURMAUX S, PAYEUR S, ALEXANDROV A, et al. Laser beam wavefront correction for ultra high intensities with the 200 TW laser system at the advanced laser light source[J]. Optics Express, 2008, 16(16): 11987-11994.

    [17] [17] DANSON C N, BARZANTI L J, CHANG Z, et al. High contrast multi-terawatt pulse generation using chirped pulse amplification on the VULCAN laser facility[J]. Optics Communications, 1993, 103(5): 392-397.

    [18] [18] DANSON C N, COLLIER J, NEELY D, et al. Well characterized 1019W/cm2 operation of VULCAN-an ultra-high power Nd:glass laser[J]. Journal of Modern Optics, 1998, 45(8): 1653-1669.

    [19] [19] DANSON C, NEELY D, HILLIER D. Pulse fidelity in ultra-high-power (petawatt class) laser systems[J]. High Power Laser Science and Engineering, 2014(2): 2-12.

    [21] [21] HOPPS N, OADES K, ANDREW J, et al. Comprehensive description of the orion laser facility[J]. Plasma Physics and Controlled Fusion, 2015, 57(6): 064002.

    [22] [22] HILLIER D I, ELSMERE S, GIRLING M, et al. Contrast enhancements to petawatt lasers using short pulse optical parametric amplifiers and frequency doubling[J]. Applied Optics, 2014, 53(29): 6938-6943.

    [23] [23] BLANCHOT N, BEHAR G, BERTHIER T, et al. Overview of PETAL, the multi-Petawatt project on the LIL facility[J]. Plasma Physics and Controlled Fusion, 2008, 50(12): 124045.

    [24] [24] BLANCHOT N, Béhar G, CHAPUIS J C, et al. 1.15 PW-850 J compressed beam demonstration using the PETAL facility[J]. Optics Express, 2017, 25(15): 16957-16970.

    [25] [25] PAPADOPOULOS D N, ZOU J P, LE BLANC C, et al. The apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics[J]. High Power Laser Science and Engineering, 2016(4): e34.

    [26] [26] PAPADOPOULOS D N, RAMIREZ P, GENEVRIER K, et al. High-contrast 10 fs OPCPA-based front end for multi-PW laser chains[J]. Optics Letters, 2017, 42(18): 3530-3533.

    [27] [27] PAPADOPOULOS D N, ZOU J P, BLANC C L, et al. First commissioning results of the apollon laser on the 1 PW beam line[C]//2019 Conference on Lasers and Electro-Optics (CLEO), 2019: 1-2.

    [28] [28] LULI. Architecture of the APOLLON laser[EB/OL]. https://portail.polytechnique.edu/luli/en/cilex-apollon/apollon/architecture-apollon-laser.

    [29] [29] WANDT C, KLINGEBIEL S, KEPPLER S, et al. Development of a Joule-class Yb:YAG amplifier and its implementation in a CPA system generating 1 TW pulses[J]. Laser&Photonics Reviews, 2015, 8(6): 875-881.

    [30] [30] BAGNOUD V, AURAND B, BLAZEVIC A, et al. Commissioning and early experiments of the PHELIX facility[J]. Applied Physics B, 2010, 100(1): 137-150.

    [31] [31] DELBOS N, WERLE C, DORNMAIR I, et al. Lux-a laser-plasma driven undulator beamline[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018(909): 318-322.

    [32] [32] KIRCHEN M, JALAS S, MESSNER P, et al. Optimal beam loading in a laser-plasma accelerato[J]. Physical Review Letters, 2021, 126(17): 174801.

    [33] [33] SCHLENVOIGT H-P, HEINZL T, SCHRAMM U, et al. Detecting vacuum birefringence with x-ray free electron lasers and high-power optical lasers: a feasibility study[J]. Physica Scripta, 2016, 91(2): 023010.

    [34] [34] BOEHM K J, ALEXANDER N, ANDERSON J, et al. Assembly and metrology of NIF target subassemblies using robotic systems[J]. High Power Laser Science and Engineering, 2017(5): e25.

    [35] [35] CERCHEZ M, PRASAD R, AURAND B, et al. ARCTURUS laser: a versatile high-contrast, high-power multi-beam laser system[J]. High Power Laser Science and Engineering, 2019(7): e37.

    [36] [36] ZEIL K, KRAFT S D, BOCKE S, et al. The scaling of proton energies in ultrashort pulse laser plasma acceleration[J]. New Journal of Physics, 2010, 12(4): 045015.

    [37] [37] HORNUNG M, LIEBETRAU H, KEPPLER S, et al. 54??J pulses with 18 nm bandwidth from a diode-pumped chirped- pulse amplification laser system[J]. Optics Letters, 2016, 41(22): 5413-5416.

    [38] [38] HORNUNG M, LIEBETRAU H, SEIDEL A, et al. The all-diode-pumped laser system POLARIS -an experimentalist’s tool generating ultra-high contrast pulses with high energy [J]. High Power Laser Science and Engineering, 2014(2): e20.

    [39] [39] M L. Diode-pumped high-energy laser amplifiers for ultrashort laser pulses the PENELOPE laser system[D]. Saechsische Landesbibliothek-Staats-und Universitaetsbibliothek Dresden, 2018.

    [40] [40] SIEBOLD M, ROESER F, LOESER M, et al. PEnELOPE: a high peak-power diode-pumped laser system for laser-plasma experiments[C]//Proceeding of SPIE: SPIE, 2013: 878005.

    [41] [41] ALBACH D, LOESER M, SIEBOLD M, et al. Performance demonstration of the PEnELOPE main amplifier HEPA I using broadband nanosecond pulses[J]. High Power Laser Science and Engineering, 2018(7): e1.

    [42] [42] ALBACH D, LOESER M, SIEBOLD M, et al. Performance demonstration of the PEnELOPE main amplifier HEPA I using broadband nanosecond pulses[J]. High Power Laser Science and Engineering, 2019(7): e1.

    [43] [43] LMU. Block diagram of ATLAS-3000 laser system[EB/OL]. https://www.pulse.physik.uni-muenchen.de/research/high-power/atlas/index.html.

    [44] [44] RUS B, BAKULE P, KRAMER D, et al. ELI-Beamlines: progress in development of next generation short-pulse laser systems[C]//Proceeding of SPIE: SPIE, 2017: 102410J.

    [45] [45] RUS B, BAKULE P, KRAMER D, et al. ELI-beamlines laser systems: status and design options [C]//Proceeding of SPIE: SPIE, 2013: 87801T.

    [46] [46] HAEFNER C, BAYRAMIAN A, BETTS S, et al. High average power, diode pumped petawatt laser systems: a new generation of lasers enabling precision science and commercial applications [C]//Proceeding of SPIE: SPIE, 2017: 1024102.

    [47] [47] BAYRAMIAN A, BOPP R, BORDEN M, et al. High energy, high average power, DPSSL system for next generation Petawatt laser systems[C]//2016 Conference on Lasers and Electro-Optics, San Jose, California United States: OSA, 2016: STu3M.2.

    [48] [48] FULKERSON E S, TELFOED S, DERI R, et al. Pulsed power system for the HAPLS diode pumped laser system[C]//2015 IEEE Pulsed Power Conference (PPC), 2015: 1-6.

    [49] [49] LUREAU F, MATRAS G, CHALUS O, et al. High-energy hybrid femtosecond laser system demonstrating 2×10 PW capability[J]. High Power Laser Science and Engineering, 2020(8): e43.

    [50] [50] NEGOITA F, ROTH M, THIROLF P G, et al. Laser driven nuclear physics at ELINP[J]. arXiv preprint arXiv: 220101068, 2022: 1-108.

    [51] [51] Kühn S, DUMERGUE M, KAHALY S, et al. The ELI-ALPS facility: the next generation of attosecond sources[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50(13): 132002.

    [52] [52] KORN G, THOSS A, STIEL H, et al. Ultrashort 1-kHz laser plasma hard x-ray source[J]. Optics Letters, 2002, 27(10): 866-868.

    [53] [53] GEORGE K M, MORRISON J T, FEISTER S, et al. High-repetition-rate (≥kHz) targets and optics from liquid microjets for high-intensity laser-plasma interactions[J]. High Power Laser Science and Engineering, 2019(7): e50.

    [54] [54] MORRISON J T, FEISTER S, FRISCHE K D, et al. MeV proton acceleration at kHz repetition rate from ultra-intense laser liquid interaction[J]. New Journal of Physics, 2018, 20(2): 022001.

    [55] [55] WU F, LI S, LAN X. Design and implementation of electro-optical tracking and pointing turntable control system[J]. Electro-optic Technology Application, 2020, 35(4): 8-11.

    [56] [56] WANG B, ZHAO W, LI S. Method for laser transmittance measuring in atmosphere[J]. Electro-optic Technology Application, 2020, 35(5): 77-80.

    [57] [57] LIU R, WANG C, LI S, et al. Review of Thermal Dissipation Methods of High-power Semiconductor Lasers[J]. Electro-optic Technology Application, 2019, 34(6): 1-6.

    [58] [58] GAN Z, YU L, LI S, et al. 200 J high efficiency Ti:sapphire chirped pulse amplifier pumped by temporal dual-pulse[J]. Optics Express, 2017, 25(5): 5169-5178.

    [59] [59] CARTLIDGE E. The light fantastic[J]. Science, 2018, 359(6374): 382-385.

    [60] [60] PENG H S, ZHANG W Y, ZHANG X M, et al. Progress in ICF programs at CAEP[J]. Laser and Particle Beams, 2005, 23(2): 205-209.

    [61] [61] WU F X, ZHANG Z X, HU J B, et al. A novel focal spot positioning method for high peak power lasers[J]. Applied Physics B-Lasers and Optics, 2022, 128(1): 1-8.

    [62] [62] MIMA K, AZECHI H, JOHZAKI Y, et al. Present status of fast ignition research and prospects of FIREX project[J]. Fusion Science and Technology, 2005, 47(3): 662-666.

    [63] [63] SHIRAGA H, FUJIOKA S, NAKAI M, et al. Integrated experiments of fast ignition targets by Gekko-XII and LFEX lasers[J]. High Energy Density Physics, 2012, 8(3): 227-230.

    [64] [64] TABAK M, HAMMER J, GLINSKY M E, et al. Ignition and high gain with ultrapowerful lasers[J]. Physics of Plasmas, 1994, 1(5): 1626-1634.

    [65] [65] AZECHI H, MIMA K, FUJIMOTO Y, et al. Plasma physics and laser development for the fast-ignition realization experiment (FIREX) project[J]. Nuclear Fusion, 2009, 49(10): 104024.

    [66] [66] AZECHI H. The status of Fast Ignition realization experiment (FIREX) and prospects for inertial fusion energy[J]. Journal of Physics: Conference Series, 2016(717): 012006.

    [67] [67] SUNG J H, LEE S K, YU T J, et al. 0.1 Hz 1.0 PW Ti:sapphire laser [J]. Optics Letters, 2010, 35(18): 3021-3023.

    [68] [68] YU T J, LEE S K, SUNG J H, et al. Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser[J]. Optics Express, 2012, 20(10): 10807-10815.

    [69] [69] JEONG T M, YU T J, LEE S K, et al. Generation of high-contrast, 30 fs, 1.5 PW laser pulses [C]//2013 Conference on Lasers and Electro-Optics Pacific Rim: Optica Publishing Group, 2013: TuD2_1.

    [70] [70] YOON J W, JEON C, SHIN J, et al. Achieving the laser intensity of 5.5×1022 W/cm2 with a wavefront-corrected multi-PW laser[J]. Optics Express, 2019, 27(15): 20412-20420.

    [71] [71] LEEMANS W P, NAGLER B, GONSALVES A J, et al. GeV electron beams from a centimetre-scale accelerator[J]. Nature Physics, 2006, 2(10): 696-699.

    [72] [72] NAKAMURA K, MAO H, GONSALVES A J, et al. Diagnostics, control and performance parameters for the BELLA high repetition rate petawatt class laser[J]. IEEE Journal of Quantum Electronics, 2017, 53(4): 1-21.

    [73] [73] BAYRAMIAN A, ARMSTRONG J, BEER G, et al. High-average-power femto-petawatt laser pumped by the Mercury laser facility[J]. Journal of the Optical Society of America B, 2008, 25(7): B57-B61.

    [74] [74] BAYRAMIAN A, ARMSTRONG P, AUIT E, et al. The mercury project: a high average power, gas-cooled laser for inertial fusion energy development[J]. Fusion Science and Technology, 2007, 52(3): 383-387.

    [75] [75] ERLANDSON A C, ACEVES S M, BAYRAMIAN A J, et al. Comparison of Nd:phosphate glass, Yb:YAG and Yb:S-FAP laser beamlines for laser inertial fusion energy (LIFE) [Invited][J]. Optical Materials Express, 2011, 1(7): 1341-1352.

    [76] [76] TOMAS M. SPINKA C H. High-average-power ultafast lasers[J]. Optics&Photonics News, 2017(28): 28-33.

    [77] [77] LIU Z, LI S, BAI Z X, et al. Stokes duration broadening suppressing in the process of stimulated Brillouin scattering compression[J]. Electro-optic Technology Application, 2019, 34(2): 17-21.

    [78] [78] CUI C, WANG Y L, LU Z W, et al. Joule-level 10 Hz non-collinear multi-pump SBS amplifier with high energy extraction efficiency used for laser beams combination[C]//Conference on Lasers and Electro-Optics (CLEO), 2019.

    Tools

    Get Citation

    Copy Citation Text

    CUI Can, LIU Xu, LI Sensen, WANG Yue, BAI Zhenxu, WANG Yulei, LV Zhiwei. Compact Petawatt High-intensity Ultrashort Laser Facilities Progress (Invited)[J]. Electro-Optic Technology Application, 2022, 37(4): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 12, 2022

    Accepted: --

    Published Online: Dec. 14, 2022

    The Author Email:

    DOI:

    Topics