Chinese Journal of Quantum Electronics, Volume. 41, Issue 3, 485(2024)
Quantitative analysis of Cu‐Zn alloys using CF‐LIBS with self‐absorption correction in a quasi‐optically thin state
[1] Harmon R S, Senesi G S. Laser-induced breakdown spectroscopy―A geochemical tool for the 21st century[J]. Applied Geochemistry, 128, 104929(2021).
[2] Dilecce G, De Pascale O, Bove A et al. On the detection of silicon in pig iron by LIBS[J]. Optics & Laser Technology, 132, 106463(2020).
[3] Hudson S W, Craparo J, De Saro R et al. Applications of laser-induced breakdown spectroscopy (LIBS) in molten metal processing[J]. Metallurgical and Materials Transactions B, 48, 2731-2742(2017).
[4] Martin M, Brice D, Martin S et al. Inorganic characterization of switchgrass biomass using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 186, 106323(2021).
[5] Al-Salihi M, Yi R X, Wang S Q et al. Quantitative laser-induced breakdown spectroscopy for discriminating neoplastic tissues from non-neoplastic ones[J]. Optics Express, 29, 4159-4173(2021).
[6] Choi J H, Shin S, Moon Y et al. High spatial resolution imaging of melanoma tissue by femtosecond laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 179, 106090(2021).
[7] Lawley C J M, Somers A M, Kjarsgaard B A. Rapid geochemical imaging of rocks and minerals with handheld laser induced breakdown spectroscopy (LIBS)[J]. Journal of Geochemical Exploration, 222, 106694(2021).
[8] Fabre C. Advances in Laser-Induced Breakdown Spectroscopy analysis for geology: A critical review[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 166, 105799(2020).
[9] Legnaioli S, Campanella B, Pagnotta S et al. Determination of ash content of coal by laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 155, 123-126(2019).
[10] Ayyalasomayajula K K, Yu-Yueh F, Singh J P et al. Application of laser-induced breakdown spectroscopy for total carbon quantification in soil samples[J]. Applied Optics, 51, B149-B154(2012).
[11] López-López M, Alvarez-Llamas C, Pisonero J et al. An exploratory study of the potential of LIBS for visualizing gunshot residue patterns[J]. Forensic Science International, 273, 124-131(2017).
[12] Vander Pyl C, Menking-Hoggatt K, Arroyo L et al. Evolution of LIBS technology to mobile instrumentation for expediting firearm-related investigations at the laboratory and the crime scene[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 207, 106741(2023).
[13] Syta O, Wagner B, Bulska E et al. Elemental imaging of heterogeneous inorganic archaeological samples by means of simultaneous laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry measurements[J]. Talanta, 179, 784-791(2018).
[14] Novotná M, Zikmundová E, Pořízka P et al. X-ray micro computed tomography-aided calibration of laser-induced breakdown spectroscopy depth profiling for archaeological ceramics examination[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 172, 105965(2020).
[15] Wang W, Kong W W, Shen T T et al. Quantitative analysis of cadmium in rice roots based on LIBS and chemometrics methods[J]. Environmental Sciences Europe, 33, 37(2021).
[16] Pan C Y, Du X W, An N et al. Quantitative analysis of carbon steel with multi-line internal standard calibration method using laser-induced breakdown spectroscopy[J]. Applied Spectroscopy, 70, 702-708(2016).
[17] Gupta G P, Suri B M, Verma A et al. Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy[J]. Journal of Alloys and Compounds, 509, 3740-3745(2011).
[18] Lazic V, Colao F, Fantoni R et al. Underwater sediment analyses by laser induced breakdown spectroscopy and calibration procedure for fluctuating plasma parameters[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 30-39(2007).
[19] Bassiotis I, Diamantopoulou A, Giannoudakos A et al. Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 56, 671-683(2001).
[20] Ciucci A, Corsi M, Palleschi V et al. New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy[J]. Applied Spectroscopy, 53, 960-964(1999).
[22] Gong G M, Yang J. Quantitative analysis of Cr in milk powder by laser induced breakdown spectroscopy[J]. Journal of Anhui Agricultural Sciences, 43, 219-222(2015).
[23] Zou X Y, Mo J Y. Spline wavelet analysis for voltammetric signals[J]. Analytica Chimica Acta, 340, 115-121(1997).
[24] Deng F, Hu Z L, Cui H H et al. Progress in the correction of self-absorption effect on laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 41, 2989-2998(2021).
[25] Bulajic D, Corsi M, Cristoforetti G et al. A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 57, 339-353(2002).
[26] Moon H Y, Herrera K K, Omenetto N et al. On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 702-713(2009).
[27] Ni Z B, Dong F Z, Chen X L et al. Research on algorithm for self-absorption correction based on multi-particles LIBS spectra[J]. Spectroscopy and Spectral Analysis, 34, 2523-2528(2014).
[28] El Sherbini A M, El Sherbini T M, Hegazy H et al. Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 60, 1573-1579(2005).
[29] Hou J J, Zhang L, Yin W B et al. Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing accurate chemical composition measurements[J]. Optics Express, 25, 23024-23034(2017).
[30] Zhang L, Sun Y, Hou J J et al. Investigation and performance evaluation of optically thin laser-induced breakdown spectroscopy without self-absorption[J]. Scientia Sinica-Physica, Mechanica & Astronomica, 47, 124201(2017).
[31] Hou J J, Zhang L, Zhao Y et al. Resonance/non-resonance doublet-based self-absorption-free LIBS for quantitative analysis with a wide measurement range[J]. Optics Express, 27, 3409-3421(2019).
[32] Zhang Z M, Chen S, Liang Y Z. Baseline correction using adaptive iteratively reweighted penalized least squares[J]. Analyst, 135, 1138-1146(2010).
[34] Martínez-Minchero M, Cobo A, Méndez-Vicente A et al. Comparison of Mg/Ca concentration series from Patella depressa limpet shells using CF-LIBS and LA-ICP-MS[J]. Talanta, 251, 123757(2023).
[35] Kepple P, Griem H R. Improved Stark profile calculations for the hydrogen lines Hα, Hβ, Hγ, and Hδ[J]. Physical Review, 173, 317(1968).
Get Citation
Copy Citation Text
Xuanbo ZHANG, Shoujie LI, Ying LI, Ye TIAN, Wangquan YE, Jinjia GUO, Ronger ZHENG, Yuan LU. Quantitative analysis of Cu‐Zn alloys using CF‐LIBS with self‐absorption correction in a quasi‐optically thin state[J]. Chinese Journal of Quantum Electronics, 2024, 41(3): 485
Category: Special Issue on Key Technologies and Applications of LIBS
Received: Dec. 15, 2023
Accepted: --
Published Online: Jul. 17, 2024
The Author Email: YE Wangquan (yewangquan@ouc.edu.cn)