Journal of the Chinese Ceramic Society, Volume. 51, Issue 6, 1626(2023)
Progress and Prospect of Energy Storage of Metal Phosphide-Rich
[2] [2] WALTER M, KOVALENKO M V, KRAVCHYK K V. Challenges and benefits of post-lithium-ion batteries[J]. New J Chem, 2020, 44(5): 1677-1683.
[3] [3] YU S, KIM S O, KIM H S, et al. Computational screening of anode materials for sodium-ion batteries[J]. J Electrochem Soc, 2019, 166(10): A1915-A1919.
[4] [4] JIN W, WANG Z, FU Y Q. Monolayer black phosphorus as potential anode materials for Mg-ion batteries[J]. J Mater Sci, 2016, 51(15): 7355-7360.
[5] [5] PRAMUDITA J C, SEHRAWAT D, GOONETILLEKE D, et al. An initial review of the status of electrode materials for potassium-ion batteries[J]. Adv Energy Mater, 2017, 7(24): 1602911.
[6] [6] NISHI Y. The development of lithium ion secondary batteries[J]. Chem Rec, 2001, 1(5): 406-413.
[7] [7] SHEN L, ZHANG X, UCHAKER E, et al. Li4Ti5O12 Nanoparticles embedded in a mesoporous carbon matrix as a superior anode material for high rate lithium ion batteries[J]. Adv Energy Mater, 2012, 2(6): 691-698.
[8] [8] DU Y, ZHU X, ZHOU X, et al. Co3S4 porous nanosheets embedded in graphene sheets as high-performance anode materials for lithium and sodium storage[J]. J Mater Chem A, 2015, 3(13): 6787-6791.
[9] [9] WEI X, WANG X, TAN X, et al. Nanostructured conversion-type negative electrode materials for low-cost and high-performance sodium-ion batteries[J]. Adv Funct Mater, 2018, 28(46): 1804458.
[10] [10] LAO M, ZHANG Y, LUO W, et al. Alloy-based anode materials toward advanced sodium-ion batteries[J]. Adv Mater, 2017, 29(48): 1700622.
[11] [11] PARK C M, KIM J H, KIM H, et al. Li-alloy based anode materials for Li secondary batteries[J]. Chem Soc Rev, 2010, 39(8): 3115-3141.
[15] [15] DONG W, ZHAO Y, WANG X, et al. Boron embedded in metal iron matrix as a novel anode material of excellent performance[J]. Adv Mater, 2018, 30(35): 1801409.
[16] [16] DONG C, DONG W, LIN X, et al. Recent progress and perspectives of defective oxide anode materials for advanced lithium ion battery[J]. EnergyChem, 2020, 2(6): 100045.
[17] [17] DONG C, DONG W, ZHANG Q, et al. Sulfur-terminated tin oxides for durable, highly reversible storage of large-capacity lithium[J]. J Mater Chem A, 2020, 8(2): 626-631.
[18] [18] DONG C, ZHANG X, DONG W, et al. ZnO/ZnS heterostructure with enhanced interfacial lithium absorption for robust and large-capacity energy storage[J]. Environ Sci Technol, 2022, 15(11): 4738-4747.
[19] [19] DONG H, DENG M, SUN D, et al. Amorphous lithium-phosphate- encapsulated Fe2O3 as a high-rate and long-life anode for lithium-ion batteries[J]. ACS Appl Nano Mater, 2022, 5(3): 3463-3470.
[20] [20] DONG W, LI R, XU J, et al. Long-life and high volumetric capacity Bi2Sn2O7 anode with interpenetrating Bi-O and Sn-O networks[J]. Cell Rep Phys Sci, 2022, 3(11): 101109.
[21] [21] DONG W, XU J, WANG C, et al. A robust and conductiveblack Tin Oxide nanostructure makes efficient lithium-ion batteries Possible[J]. Adv Mater, 2017, 29(24): 1700136.
[23] [23] LI R, XU J, LV Z, et al. Achieving highly stable Sn-based anode by a stiff encapsulation heterostructure[J]. Sci China Mater, 2022, 65(3): 695-703.
[24] [24] LIU Z, DONG W, WANG J, et al. Orthorhombic Nb2O5-x for durable high-rate anode of Li-ion batteries[J]. iScience, 2020, 23(1): 100767.
[25] [25] LV Z, DONG W, JIA B, et al. Flexible yet robust framework of Tin(II) Oxide carbodiimide for reversible lithium storage[J]. Chem Eur J, 2021, 27(8): 2717-2723.
[26] [26] POLZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batterles[J]. Nature, 2000, 407(6803): 496-499.
[27] [27] REDDY M V, SUBBA RAO G V, CHOWDARI B V R. Metal oxides and oxysalts as anode materials for Li ion batteries[J]. Chem Rev, 2013, 113(7): 5364-5457.
[28] [28] DONG W, NONG S, LIU Z, et al. A facile top-down method to fabricate transition metal compounds with fascinating structures from etching method[J]. G C, 2018, 4(1): 170022.
[29] [29] XU J, DONG W, SONG C, et al. Black rutile (Sn, Ti)O2 initializing electrochemically reversible Sn nanodots embedded in amorphous lithiated titania matrix for efficient lithium storage[J]. J Mater Chem A, 2016, 4(40): 15698-15704.
[30] [30] ZHAO Y, DONG W, RIAZ M S, et al. “Electron-sharing” mechanism promotes Co@Co3O4/CNTs composite as the high-capacity anode material of lithium-ion battery[J]. ACS Appl Mater Interfaces, 2018, 10(50): 43641-43649.
[31] [31] ZHAO Y, RIAZ M S, DONG W, et al. Cu-dispersed cobalt oxides as high volumetric capacity anode materials for Li-ion storage[J]. Energy Storage Mater, 2020, 27: 453-458.
[32] [32] JIANG Y, ZHANG D, LI Y, et al. Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries[J]. Nano Energy, 2014, 4: 23-30.
[33] [33] WANG J, YANG N, TANG H, et al. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries[J]. Angew Chem Int Ed, 2013, 52(25): 6417-6420.
[34] [34] ZHANG H, WANG L, LI H, et al. Criterion for identifying anodes for practically accessible high-energy-density lithium-ion batteries[J]. ACS Energy Letters, 2021, 6(10): 3719-3724.
[35] [35] ZHAO Y, DONG W, NONG S, et al. Assembling iron oxide nanoparticles into aggregates by Li3PO4: A universal strategy inspired by frogspawn for robust Li-storage[J]. ACS Nano, 2022, 16(2): 2968-2977.
[36] [36] SUN Y, WANG L, LI Y, et al. Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density[J]. Joule, 2019, 3(4): 1080-1093.
[37] [37] LIU H, DU Y, DENG Y, et al. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications[J]. Chem Soc Rev, 2015, 44(9): 2732-2743.
[38] [38] LI Z, ZHENG Y, LIU Q, et al. Recent advances in nanostructured metal phosphides as promising anode materials for rechargeable batteries[J]. J Mater Chem A, 2020, 8(37): 19113-19132.
[39] [39] WANG L, HE X, LI J, et al. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries[J]. Angew Chem Int Ed Engl, 2012, 51(36): 9034-9037.
[40] [40] YU Z, SONG J, WANG D, et al. Advanced anode for sodium-ion battery with promising long cycling stability achieved by tuning phosphorus-carbon nanostructures[J]. Nano Energy, 2017, 40: 550-558.
[41] [41] ZHAO X, KONG X, LIU Z, et al. The cutting-edge phosphorus-rich metal phosphides for energy storage and conversion[J]. Nano Today, 2021, 40: 101245.
[42] [42] HU Z, TEBYETEKERWA M, ELKHOLY A E, et al. Synthesis of carbon-modified cobalt disphosphide as anode for sodium-ion storage[J]. Electrochim Acta, 2022, 423: 140611.
[43] [43] LU A, ZHANG X, CHEN Y, et al. Synthesis of Co2P/graphene nanocomposites and their enhanced properties as anode materials for lithium ion batteries[J]. J Power Sources, 2015, 295: 329-335.
[44] [44] CHEN S, WU F, SHEN L, et al. Cross-linking hollow carbon sheet encapsulated CuP2 nanocomposites for high energy density sodium-ion batteries[J]. ACS Nano, 2018, 12(7): 7018-7027.
[45] [45] WANG K, YANG J, XIE J, et al. Electrochemical reactions of lithium with CuP2 and Li1.75Cu1.25P2 synthesized by ballmilling[J]. Electrochem Commun, 2003, 5(6): 480-483.
[46] [46] KIM M G, LEE S, CHO J. Highly reversible Li-ion intercalating MoP2 nanoparticle cluster anode for lithium rechargeable batteries[J]. J Electrochem Soc, 2009, 156(2): A89.
[47] [47] FULLENWARTH J, DARWICHE A, SOARES A, et al. NiP3: A promising negative electrode for Li- and Na-ion batteries[J]. J Mater Chem A, 2014, 2(7): 2050-2059.
[48] [48] LOU P, CUI Z, JIA Z, et al. Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage[J]. ACS Nano, 2017, 11(4): 3705-3715.
[49] [49] GILLOT F, MéNéTRIER M, BEKAERT E, et al. Vanadium diphosphides as negative electrodes for secondary Li-ion batteries[J]. J Power Sources, 2007, 172(2): 877-885.
[50] [50] KIM S-O, MANTHIRAM A. High-performance red P-based P-TiP2-C nanocomposite anode for lithium-ion and sodium-ion storage[J]. Chem Mater, 2016, 28(16): 5935-5942.
[51] [51] FAN X, MAO J, ZHU Y, et al. Superior stable self-healing SnP3 anode for sodium-ion batteries[J]. Adv Energy Mater, 2015, 5(18): 1500174.
[52] [52] WANG T, ZHANG K, PARK M, et al. Highly reversible and rapid sodium storage in GeP3 with synergistic effect from outside-in optimization[J]. ACS Nano, 2020, 14(4): 4352-4365.
[53] [53] ZHANG W, DAHBI M, AMAGASA S, et al. Iron phosphide as negative electrode material for Na-ion batteries[J]. Electrochem Commun, 2016, 69: 11-14.
[54] [54] KIM Y U, CHO B W, SOHN H J. The reaction mechanism of lithium insertion in vanadium tetraphosphide[J]. J Electrochem Soc, 2005, 152(8): A1475.
[55] [55] KIM K H, HONG S H. Manganese tetraphosphide (MnP4) as a high capacity anode for lithium-ion and sodium-ion batteries[J]. Adv Energy Mater, 2021, 11(9): 2003609.
[56] [56] WEI Y, CHEN J, HE J, et al. Morphology processing by encapsulating GeP5 nanoparticles into nanofibers toward enhanced thermo/electrochemical stability[J]. ACS Appl Mater Interfaces, 2018, 10(38): 32162-32170.
[57] [57] LI W, LI H, LU Z, et al. Layered phosphorus-like GeP5: A promising anode candidate with high initial coulombic efficiency and large capacity for lithium ion batteries[J]. Environ Sci Technol, 2015, 8(12): 3629-3636.
[58] [58] RüHL R, JEITSCHKO W. Stacking variants of MnP4: preparation and structure of 6-MnP4[J]. Acta Crystallogr Sec B, 1981, 37(1): 39-44.
[59] [59] ALCNTARA R, TIRADO J L, JUMAS J C, et al. Electrochemical reaction of lithium with CoP3[J]. J Power Sources, 2002, 109(2): 308-312.
[60] [60] SOUZA D C S, PRALONG V, JACOBSON A J, et al. A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry[J]. Science, 2002, 296(5575): 2012-2015.
[61] [61] WEEBER A W, BAKKER H. Amorphization by ball milling. A review[J]. Physica B, 1988, 153(1): 93-135.
[62] [62] ZHANG Z, YANG J, NULI Y, et al. CoPx synthesis and lithiation by ball-milling for anode materials of lithium ion cells[J]. Solid State Ionics, 2005, 176(7): 693-697.
[63] [63] QI W, ZHAO H, WU Y, et al. Facile synthesis of layer structured GeP3/C with stable chemical bonding for enhanced lithium-ion storage[J]. Sci Rep, 2017, 7(1): 43582.
[64] [64] DEMAZEAU G. Solvothermal processes: A route to the stabilization of new materials[J]. J Mater Chem, 1999, 9(1): 15-18.
[65] [65] DEMAZEAU G. Solvothermal reactions: an original route for the synthesis of novel materials[J]. JMS, 2008, 43(7): 2104-2114.
[66] [66] LIU S, ZHANG H, XU L, et al. Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries[J]. J Power Sources, 2016, 304: 346-353.
[67] [67] TSENG K W, HUANG S B, CHANG W C, et al. Synthesis of mesoporous germanium phosphide microspheres for high-performance lithium-ion and sodium-ion battery anodes[J]. Chem Mater, 2018, 30(13): 4440-4447.
[68] [68] LI G A, WANG C Y, CHANG W C, et al. Phosphorus-rich copper phosphide nanowires for field-effect transistors and lithium-ion batteries[J]. ACS Nano, 2016, 10(9): 8632-8644.
[69] [69] BOYANOV S, BERNARDI J, BEKAERT E, et al. P-redox mechanism at the origin of the high lithium storage in NiP2-based batteries[J]. Chem Mater, 2009, 21(2): 298-308.
[70] [70] SUGITANI M, KINOMURA N, KOIZUMI M, et al. Preparation and properties of a new iron phosphide FeP4[J]. J Solid State Chem, 1978, 26(2): 195-201.
[71] [71] WU J J, FU Z W. Pulsed-Laser-Deposited Sn4P3 Electrodes for Lithium-Ion Batteries[J]. J Electrochem Soc, 2009, 156(1): A22.
[72] [72] YANG D, ZHU J, RUI X, et al. Synthesis of cobalt phosphides and their application as anodes for lithium ion batteries[J]. ACS Appl Mater Interfaces, 2013, 5(3): 1093-1099.
[74] [74] DING X, SUN H. Layered phosphorus-rich phosphide composite as a stable, high-capacity anode for sodium ion batteries[J]. ACS Appl Energy Mater, 2019, 2(6): 4309-4315.
[75] [75] LIU W, ZHI H, YU X. Recent progress in phosphorus based anode materials for lithium/sodium ion batteries[J]. Energy Storage Mater, 2019, 16: 290-322.
[77] [77] ZHANG W, LIU T, WANG Y, et al. Strategies to improve the performance of phosphide anodes in sodium-ion batteries[J]. Nano Energy, 2021, 90: 106475.
[78] [78] PARK C-M, SOHN H-J. Tetragonal zinc diphosphide and its nanocomposite as an anode for lithium secondary batteries[J]. Chem Mater, 2008, 20(20): 6319-6324.
[79] [79] DUAN J, DENG S, WU W, et al. Chitosan derived carbon matrix encapsulated CuP2 nanoparticles for sodium-ion storage[J]. ACS Appl Mater Interfaces, 2019, 11(13): 12415-12420.
[80] [80] KIM Y, KIM Y, CHOI A, et al. Tin phosphide as a promising anode material for Na-Ion batteries[J]. Adv Mater, 2014, 26(24): 4139-4144.
[81] [81] PRALONG V, SOUZA D C S, LEUNG K T, et al. Reversible lithium uptake by CoP3 at low potential: role of the anion[J]. Electrochem Commun, 2002, 4(6): 516-520.
[82] [82] ZHANG S, ZHU L, SONG H, et al. How graphene is exfoliated from graphitic materials: synergistic effect of oxidation and intercalation processes in open, semi-closed, and closed carbon systems[J]. J Mater Chem, 2012, 22(41): 22150-22154.
[84] [84] BOYANOV S, ZITOUN D, MéNéTRIER M, et al. Comparison of the electrochemical lithiation/delitiation mechanisms of FePx (x=1, 2, 4) based electrodes in Li-ion batteries[J]. J Phys Chem C, 2009, 113(51): 21441-21452.
[85] [85] JEITSCHKO W, BRAUN D J. Synthesis and crystal structure of the iron polyphosphide FeP4[J]. Acta Crystallogr Sec B, 1978, 34(11): 3196-3201.
[86] [86] JEITSCHKO W, FLRKE U, SCHOLZ U D. Ambient pressure synthesis, properties, and structure refinements of VP4 and CoP2[J]. J Solid State Chem, 1984, 52(3): 320-326.
[87] [87] SUN D, ZHU X, LUO B, et al. New binder-free metal phosphide-carbon felt composite anodes for sodium-ion battery[J]. Adv Energy Mater, 2018, 8(26): 1801197.
[88] [88] LI C, LIU X, YU Z, et al. The remarkable anisotropic compressibility and metallic Cr-Cr chains in topological semimetal CrP4 under high pressure[J]. Phys Status Solidi (b), 2021, 258(5): 2000544.
[89] [89] WU W, YU Z H, XU M, et al. Large magnetoresistance and unexpected low thermal conductivity in topological semimetal CrP4 single crystal[J]. Appl Phys A, 2022, 128(3): 196.
[90] [90] JEITSCHKO W, DONOHUE P C. The high pressure synthesis, crystal structure, and properties of CrP4 and MoP4[J]. Acta Crystallogr Sec B, 1972, 28(6): 1893-1898.
[91] [91] LI W, KE L, WEI Y, et al. Highly reversible sodium storage in a GeP5/C composite anode with large capacity and low voltage[J]. J Mater Chem A, 2017, 5(9): 4413-4420.
[92] [92] LIU Y, XIAO X, FAN X, et al. GeP5/C composite as anode material for high power sodium-ion batteries with exceptional capacity[J]. J Alloys Compd, 2018, 744: 15-22.
[93] [93] NILGES T, LANGE S. CuSnP14 und AgSbP14: Struktur-chemische aspekte und betrachtungen zur chemischen bindung[J]. Z Anorg Allg Chem, 2006, 632(12-13): 2097-2097.
[95] [95] LI X, WANG R, YU Y, et al. MOF-derived multi-shelled NiP2 microspheres as high-performance anodematerials for sodium-/potassium-Ion Batteries[J]. Adv Energy Sustain Res, 2022, 3(7): 2200010.
[96] [96] KANNO R, KINOMURA N, KOIZUMI M, et al. High-pressure synthesis and structure of the new niobium phosphide Nb2P5[J]. Acta Crystallogr Sec B, 1980, 36(10): 2206-2210.
[97] [97] LIU X, YU Z, LIANG Q, et al. High-Pressure Crystal Growth, Superconducting Properties, and Electronic Band Structure of Nb2P5[J]. Chem Mater, 2020, 32(20): 8781-8788.
[98] [98] KIM K H, CHOI J, HONG S H. Superior electrochemical sodium storage of V4P7 nanoparticles as an anode for rechargeable sodium-ion batteries[J]. Chem Commun, 2019, 55(22): 3207-3210.
[99] [99] KIM K H, JUNG C H, KIM W S, et al. V4P7@C nanocomposite as a high performance anode material for lithium-ion batteries[J]. J Power Sources, 2018, 400: 204-211.
[100] [100] LI W, SHEN P, LIAO J, et al. Cu2P7-black P-MWCNTs (CuP5/MWCNTs): An advanced hybrid anode for Li/Na-ion batteries[J]. Mater Lett, 2019, 253: 263-267.
Get Citation
Copy Citation Text
CHEN Wen, HU Keyan, DONG Wujie, HUANG Fuqiang. Progress and Prospect of Energy Storage of Metal Phosphide-Rich[J]. Journal of the Chinese Ceramic Society, 2023, 51(6): 1626
Category:
Received: Dec. 17, 2022
Accepted: --
Published Online: Aug. 13, 2023
The Author Email:
CSTR:32186.14.