Laser Journal, Volume. 45, Issue 7, 186(2024)

Composite vortex beam recognition based on improved Vision Transformer

ZHANG Chengzhi... CAO Yang, TU Qiaolin and PENG Xiaofeng |Show fewer author(s)
Author Affiliations
  • School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, China
  • show less
    References(14)

    [1] [1] Douik A, Dahrouj H, Al-Naffouri T Y, et al. Hybrid Radio/Free-Space Optical Design for Next Generation Backhaul Systems[J]. IEEE Transactions on Communications, 2016, 64(6) 2563-2577.

    [2] [2] Zhou H L, Dong J J, Shi L, et al. Hybrid coding method of multiple orbital angular momentum states based on the inherent orthogonality[J]. Optics Letters, 2014, 39(4): 731-734..

    [3] [3] Wang J. Twisted optical communications using orbital angular momentum[J]. Science China Physics, Mechanics & Astronomy, 2018, 62(3): 034201.

    [4] [4] Zhang W H, Qi Q Q, Zhou J, et al. Mimicking Faraday rotation to sort the orbital angular momentum of light[J]. Physical Review Letters, 2014, 112(15): 153601.

    [5] [5] Zheng S, Wang J. Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings[J]. Science Reports, 2017, 7: 40781.

    [6] [6] Wen Y H, Chremmos I, Chen Y J, et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes[J]. Physical Review Letters, 2018, 120(19): 193904.

    [7] [7] Lu J N, Cao C Y, Zhu Z Q, et al. Flexible measurement of high-order optical orbital angular momentum with a variable cylindrical lens pair[J]. Applied Physics Letters, 2020, 116(20): 201105.

    [8] [8] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.

    [9] [9] Knutson E M, Lohani S, Danaci O, et al. Deep learning as a tool to distinguish between high orbital angular momentum optical modes[C]//Optics and Photonics for Information Processing X. September 9, 2016, San Diego, California, United States, 2016, 9970: 236-242.

    [10] [10] Hao Y, Zhao L, Huang T, et al. High-accuracy recognition of orbital angular momentum modes propagated in atmospheric turbulences based on deep learning[J]. IEEE Access, 2020, 8: 159542-159551.

    [14] [14] Toselli I. Introducing the concept of anisotropy at different scales for modeling optical turbulence[J]. Journal of the Optical Society of America A, 2014, 31(8): 1868-1875.

    [15] [15] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is Worth 16×16 Words: Transformers for image recognition at scale[EB/OL]. (2021-6-3)[2023-6-19].

    [16] [16] Fu Z, Fu Z, Liu Q, et al. SparseTT: Visual Tracking with Sparse Transformers[EB/OL]. (2022-5-8) [2023-6-19].

    [18] [18] Wang X, Song Y, Pang F, et al. High-dimension data coding and decoding by radial mode and orbital angular momentum mode of a vortex beam in free space[J]. Optics and Lasers in Engineering, 2021, 137(9): 346-352.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Chengzhi, CAO Yang, TU Qiaolin, PENG Xiaofeng. Composite vortex beam recognition based on improved Vision Transformer[J]. Laser Journal, 2024, 45(7): 186

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 19, 2023

    Accepted: Dec. 20, 2024

    Published Online: Dec. 20, 2024

    The Author Email:

    DOI:10.14016/j.cnki.jgzz.2024.07.186

    Topics