Laser & Optoelectronics Progress, Volume. 61, Issue 1, 0123001(2024)

Research Progress of Metasurface-Based Jones Matrix Modulation (Invited)

Chao Feng1,2,3, Tao He1,2,3、*, Yuzhi Shi1,2,3, Zhanshan Wang1,2,3, and Xinbin Cheng1,2,3
Author Affiliations
  • 1Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 2MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 3Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
  • show less
    References(117)

    [1] Rubin N A, D’Aversa G, Chevalier P et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 365, eaax1839(2019).

    [2] D’Ambrosio V, Spagnolo N, Del Re L et al. Photonic polarization gears for ultra-sensitive angular measurements[J]. Nature Communications, 4, 2432(2013).

    [3] Naidoo D, Roux F S, Dudley A et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nature Photonics, 10, 327-332(2016).

    [4] Song J J, Shen L Y, Sun J Y et al. Temporal contrast enhancement by nonlinear elliptical polarization rotation in a multi-pass cell[J]. High Power Laser Science and Engineering, 10, e28(2022).

    [5] Wang T, Li C, Ren B et al. High-power femtosecond laser generation from an all-fiber linearly polarized chirped pulse amplifier[J]. High Power Laser Science and Engineering, 11, e25(2023).

    [6] Ma W, Kuang H, Xu L G et al. Attomolar DNA detection with chiral nanorod assemblies[J]. Nature Communications, 4, 2689(2013).

    [7] Shi Y Z, Xiong S, Zhang Y et al. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement[J]. Nature Communications, 9, 815(2018).

    [8] Shi Y Z, Zhu T T, Zhang T H et al. Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation[J]. Light: Science & Applications, 9, 62(2020).

    [9] Menzel C, Rockstuhl C, Lederer F. Advanced Jones calculus for the classification of periodic metamaterials[J]. Physical Review A, 82, 053811(2010).

    [10] Vedel M, Lechocinski N, Breugnot S. Compact and robust linear Stokes polarization camera[J]. EPJ Web of Conferences, 5, 01005(2010).

    [11] Hagen N, Shibata S, Otani Y. Generating high-performance polarization measurements with low-performance polarizers: demonstration with a microgrid polarization camera[J]. Optical Engineering, 58, 080501(2019).

    [12] Kumar P, Fatima A, Nishchal N K. Arbitrary vector beam encoding using single modulation for information security applications[J]. IEEE Photonics Technology Letters, 33, 243-246(2021).

    [13] Shuai K, Liu X F, Zhao Y et al. Multilayer dielectric grating pillar-removal damage induced by a picosecond laser[J]. High Power Laser Science and Engineering, 10, e42(2022).

    [14] Dong Y Z, Jin Y X, Kong F Y et al. Angle amplifier in a 2D beam scanning system based on peristrophic multiplexed volume Bragg gratings[J]. High Power Laser Science and Engineering, 11, e13(2023).

    [15] Wang J Z, Cao A X, Pang H et al. Vector optical field generation based on birefringent phase plate[J]. Optics Express, 25, 12531-12540(2017).

    [16] Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 44, 255-275, 376(2017).

    [17] Fu R, Li Z L, Zheng G X. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics, 14, 886-899(2021).

    [18] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [19] Ou K, Wan H Y, Wang G F et al. Advances in meta-optics and metasurfaces: fundamentals and applications[J]. Nanomaterials, 13, 1235(2023).

    [20] Li L L, Zhao H T, Liu C et al. Intelligent metasurfaces: control, communication and computing[J]. eLight, 2, 7(2022).

    [21] Ni Y B, Chen C, Wen S et al. Computational spectropolarimetry with a tunable liquid crystal metasurface[J]. eLight, 2, 23(2022).

    [22] Li C, Jang J, Badloe T et al. Arbitrarily structured quantum emission with a multifunctional metalens[J]. eLight, 3, 19(2023).

    [23] Zhu R C, Wang J F, Qiu T S et al. Remotely mind-controlled metasurface via brainwaves[J]. eLight, 2, 10(2022).

    [24] Xu K, Wang X E, Fan X H et al. Meta-holography: from concept to realization[J]. Opto-Electronic Engineering, 49, 220183(2022).

    [25] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).

    [26] Diebold A V, Imani M F, Fromenteze T et al. Passive microwave spectral imaging with dynamic metasurface apertures[J]. Optica, 7, 527-536(2020).

    [27] Wang X E, Xu K, Fan X H et al. Transversely dispersive multi⁃foci metalens based on selective spectral response structure[J]. Chinese Journal of Lasers, 50, 1813014(2023).

    [28] Engay E, Huo D W, Malureanu R et al. Polarization-dependent all-dielectric metasurface for single-shot quantitative phase imaging[J]. Nano Letters, 21, 3820-3826(2021).

    [29] Lee D, Kim M, Kim J et al. All-dielectric metasurface imaging platform applicable to laser scanning microscopy with enhanced axial resolution and wavelength selection[J]. Optical Materials Express, 9, 3248-3259(2019).

    [30] Shi Y Z, Song Q H, Toftul I et al. Optical manipulation with metamaterial structures[J]. Applied Physics Reviews, 9, 031303(2022).

    [31] Qin J, Jiang S B, Wang Z S et al. Metasurface micro/nano-optical sensors: principles and applications[J]. ACS Nano, 16, 11598-11618(2022).

    [32] Shen Y, Luo X G. Efficient bending and focusing of light beam with all-dielectric subwavelength structures[J]. Optics Communications, 366, 174-178(2016).

    [33] Wu M X, Chen R, Soh J et al. Super-focusing of center-covered engineered microsphere[J]. Scientific Reports, 6, 31637(2016).

    [34] Sun S, Zhou Z X, Zhang C et al. All-dielectric meta-reflectarray for efficient control of visible light[J]. Annalen Der Physik, 530, 1700418(2018).

    [35] Xu T, Du C L, Wang C T et al. Subwavelength imaging by metallic slab lens with nanoslits[J]. Applied Physics Letters, 91, 201501(2007).

    [36] Verslegers L, Catrysse P B, Yu Z F et al. Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Letters, 9, 235-238(2009).

    [37] Lalanne P, Astilean S, Chavel P et al. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff[J]. Journal of the Optical Society of America A, 16, 1143-1156(1999).

    [38] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).

    [39] Khorasaninejad M, Zhu A Y, Roques-Carmes C et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 16, 7229-7234(2016).

    [40] Deng Z L, Deng J H, Zhuang X et al. Facile metagrating holograms with broadband and extreme angle tolerance[J]. Light: Science & Applications, 7, 78(2018).

    [41] Min C J, Liu J P, Lei T et al. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram[J]. Laser & Photonics Reviews, 10, 978-985(2016).

    [42] Deng Z L, Zhang S, Wang G P. A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces[J]. Nanoscale, 8, 1588-1594(2016).

    [43] Khorasaninejad M, Ambrosio A, Kanhaiya P et al. Broadband and chiral binary dielectric meta-holograms[J]. Science Advances, 2, e1501258(2016).

    [44] Ma X L, Pu M B, Li X et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 5, 10365(2015).

    [45] Khorasaninejad R, Chen W T, Devlin R et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [46] Wen D D, Yue F Y, Li G X et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 6, 8241(2015).

    [47] Chen S M, Cai Y, Li G X et al. Geometric metasurface fork gratings for vortex-beam generation and manipulation[J]. Laser & Photonics Reviews, 10, 322-326(2016).

    [48] Luo W J, Sun S L, Xu H X et al. Transmissive ultrathin Pancharatnam-Berry metasurfaces with nearly 100% efficiency[J]. Physical Review Applied, 7, 044033(2017).

    [49] Pancharatnam S. Generalized theory of interference, and its applications[J]. Proceedings of the Indian Academy of Sciences-Section A, 44, 247-262(1956).

    [50] Zhang Z Y, Liang H G, He T et al. Photonic spin Hall effect based on broadband high-efficiency reflective metasurfaces[J]. Applied Optics, 59, A63-A68(2019).

    [51] Feng C, He T, Shi Y Z et al. Diatomic metasurface for efficient six-channel modulation of Jones matrix[J]. Laser & Photonics Reviews, 17, 2370040(2023).

    [52] Fan Q B, Liu M Z, Zhang C et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces[J]. Physical Review Letters, 125, 267402(2020).

    [53] Si J N, Yu X Y, Zhang J L et al. Broadened band near-perfect absorber based on amorphous silicon metasurface[J]. Optics Express, 28, 17900-17905(2020).

    [54] He T, Liu T, Xiao S Y et al. Perfect anomalous reflectors at optical frequencies[J]. Science Advances, 8, eabk3381(2022).

    [55] Dai Y H, He T, Wei Z Y et al. Anomalous reflection with customized high-efficiency bandwidth[J]. Optics Letters, 48, 956-959(2023).

    [56] Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 110, 197401(2013).

    [57] Estakhri N M, Alù A. Manipulating optical reflections using engineered nanoscale metasurfaces[J]. Physical Review B, 89, 235419(2014).

    [58] Leitis A, Heßler A, Wahl S et al. All-dielectric programmable Huygens’ metasurfaces[J]. Advanced Functional Materials, 30, 1910259(2020).

    [59] Decker M, Staude I, Falkner M et al. High-efficiency dielectric Huygens’ surfaces[J]. Advanced Optical Materials, 3, 813-820(2015).

    [60] Overvig A C, Shrestha S, Malek S C et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase[J]. Light, Science & Applications, 8, 92(2019).

    [61] Yue F Y, Zhang C M, Zang X F et al. High-resolution grayscale image hidden in a laser beam[J]. Light: Science & Applications, 7, 17129(2018).

    [62] Bao Y J, Yu Y, Xu H F et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control[J]. Light: Science & Applications, 8, 95(2019).

    [63] Wu T, Zhang X Q, Xu Q et al. Dielectric metasurfaces for complete control of phase, amplitude, and polarization[J]. Advanced Optical Materials, 10, 2101223(2022).

    [64] Liu M Z, Zhu W Q, Huo P C et al. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states[J]. Light: Science & Applications, 10, 107(2021).

    [65] Deng Z L, Deng J H, Zhuang X et al. Diatomic metasurface for vectorial holography[J]. Nano Letters, 18, 2885-2892(2018).

    [66] Deng Z L, Jin M K, Ye X et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J]. Advanced Functional Materials, 30, 1910610(2020).

    [67] Bao Y J, Ni J C, Qiu C W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams[J]. Advanced Materials, 32, 1905659(2020).

    [68] Zhang J, Dun X, Zhu J Y et al. Large numerical aperture metalens with high modulation transfer function[J]. ACS Photonics, 10, 1389-1396(2023).

    [69] Montelongo Y, Tenorio-Pearl J O, Milne W I et al. Polarization switchable diffraction based on subwavelength plasmonic nanoantennas[J]. Nano Letters, 14, 294-298(2014).

    [70] Zhao R Z, Sain B, Wei Q S et al. Multichannel vectorial holographic display and encryption[J]. Light: Science & Applications, 7, 95(2018).

    [71] Mueller J P B, Rubin N A, Devlin R C et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 118, 113901(2017).

    [72] Li S Q, Li X Y, Wang G X et al. Multidimensional manipulation of photonic spin Hall effect with a single-layer dielectric metasurface[J]. Advanced Optical Materials, 7, 1801365(2019).

    [73] Wang D Y, Liu F F, Liu T et al. Efficient generation of complex vectorial optical fields with metasurfaces[J]. Light, Science & Applications, 10, 67(2021).

    [74] Armitage N P. Constraints on Jones transmission matrices from time-reversal invariance and discrete spatial symmetries[J]. Physical Review B, 90, 035135(2014).

    [75] Bao Y J, Wen L, Chen Q et al. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface[J]. Science Advances, 7, eabh0365(2021).

    [76] Zheng C L, Li J, Yue Z et al. All-dielectric trifunctional metasurface capable of independent amplitude and phase modulation[J]. Laser & Photonics Reviews, 16, 2200051(2022).

    [77] Bao Y J, Nan F, Yan J H et al. Observation of full-parameter Jones matrix in bilayer metasurface[J]. Nature Communications, 13, 7550(2022).

    [78] Zhou Y, Kravchenko I I, Wang H et al. Multifunctional metaoptics based on bilayer metasurfaces[J]. Light: Science & Applications, 8, 80(2019).

    [79] Lin R H, Li X H. Multifocal metalens based on multilayer Pancharatnam-Berry phase elements architecture[J]. Optics Letters, 44, 2819-2822(2019).

    [80] Wang G C, Guo J Y, Wang X K et al. Arbitrary Jones matrix on-demand design in metasurfaces using multiple meta-atoms[J]. Nanoscale, 14, 14240-14247(2022).

    [81] Mirzapourbeinekalaye B, McClung A, Arbabi A. General lossless polarization and phase transformation using bilayer metasurfaces[J]. Advanced Optical Materials, 10, 2102591(2022).

    [82] Wang C, Sun Y, Zhang Q B et al. Continuous-zoom bifocal metalens by mutual motion of cascaded bilayer metasurfaces in the visible[J]. Optics Express, 29, 26569-26585(2021).

    [83] Yuan Y Y, Zhang K, Ratni B et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces[J]. Nature Communications, 11, 4186(2020).

    [84] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 1, 1-57(2009).

    [85] Yue F Y, Wen D D, Xin J T et al. Vector vortex beam generation with a single plasmonic metasurface[J]. ACS Photonics, 3, 1558-1563(2016).

    [86] Zhang F, Yu H L, Fang J W et al. Efficient generation and tight focusing of radially polarized beam from linearly polarized beam with all-dielectric metasurface[J]. Optics Express, 24, 6656-6664(2016).

    [87] Chen J, Wan C H, Zhan Q W. Vectorial optical fields: recent advances and future prospects[J]. Science Bulletin, 63, 54-74(2018).

    [88] Guo J Y, Wang X K, He J W et al. Generation of radial polarized Lorentz beam with single layer metasurface[J]. Advanced Optical Materials, 6, 1700925(2018).

    [89] Zhou Q W, Liu M Z, Zhu W Q et al. Generation of perfect vortex beams by dielectric geometric metasurface for visible light[J]. Laser & Photonics Reviews, 15, 2100390(2021).

    [90] Cheng K X, Liu Z X, Hu Z D et al. Generation of integer and fractional perfect vortex beams using all-dielectric geometrical phase metasurfaces[J]. Applied Physics Letters, 120, 201701(2022).

    [91] Li M M, Yan S H, Zhang Y N et al. Optical sorting of small chiral particles by tightly focused vector beams[J]. Physical Review A, 99, 033825(2019).

    [92] Yang Y J, Ren Y X, Chen M Z et al. Optical trapping with structured light: a review[J]. Advanced Photonics, 3, 034001(2021).

    [93] Neuman K C, Block S M. Optical trapping[J]. Review of Scientific Instruments, 75, 2787-2809(2004).

    [94] Zang X F, Dong F L, Yue F Y et al. Polarization encoded color image embedded in a dielectric metasurface[J]. Advanced Materials, 30, 1707499(2018).

    [95] Liu M Z, Huo P C, Zhu W Q et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface[J]. Nature Communications, 12, 2230(2021).

    [96] Li J, Li J T, Yue Z et al. Structured vector field manipulation of terahertz wave along the propagation direction based on dielectric metasurfaces[J]. Laser & Photonics Reviews, 16, 2200325(2022).

    [97] Li Z Y, Kim M H, Wang C et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces[J]. Nature Nanotechnology, 12, 675-683(2017).

    [98] Zhang Y B, Li Z C, Liu W W et al. Spin-selective and wavelength-selective demultiplexing based on waveguide-integrated all-dielectric metasurfaces[J]. Advanced Optical Materials, 7, 1801273(2019).

    [99] Wang R D, Wu Q, Cai W et al. Broadband on-chip terahertz asymmetric waveguiding via phase-gradient metasurface[J]. ACS Photonics, 6, 1774-1779(2019).

    [100] Meng Y, Hu F T, Shen Y J et al. Ultracompact graphene-assisted tunable waveguide couplers with high directivity and mode selectivity[J]. Scientific Reports, 8, 13362(2018).

    [101] Meng Y, Liu Z T, Xie Z W et al. Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface[J]. Photonics Research, 8, 564-576(2020).

    [102] Wen D D, Pan K, Meng J J et al. Broadband multichannel cylindrical vector beam generation by a single metasurface[J]. Laser & Photonics Reviews, 16, 2200206(2022).

    [103] Jiang Z H, Kang L, Yue T W et al. A single noninterleaved metasurface for high-capacity and flexible mode multiplexing of higher-order Poincaré sphere beams[J]. Advanced Materials, 32, 1903983(2020).

    [104] Jang J, Lee G Y, Sung J et al. Independent multichannel wavefront modulation for angle multiplexed meta-holograms[J]. Advanced Optical Materials, 9, 2100678(2021).

    [105] Dong F L, Feng H, Xu L H et al. Information encoding with optical dielectric metasurface via independent multichannels[J]. ACS Photonics, 6, 230-237(2019).

    [106] Ou Y, Zhang M, Zhang F et al. All-dielectric metasurfaces for generation and detection of multi-channel vortex beams[J]. Applied Physics Express, 12, 082004(2019).

    [107] Che X Y, Gao R, Yu Y F et al. Generalized phase profile design method for tunable devices using bilayer metasurfaces[J]. Optics Express, 29, 44214-44226(2021).

    [108] Qin S, Xu N, Huang H et al. Near-infrared thermally modulated varifocal metalens based on the phase change material Sb2S3[J]. Optics Express, 29, 7925-7934(2021).

    [109] Shao L D, Zhou K S, Zhao F F et al. Mid-infrared continuous varifocal metalens with adjustable intensity based on phase change materials[J]. Photonics, 9, 959(2022).

    [110] Qin S, Huang H, Jie K Q et al. Active modulating the intensity of bifocal metalens with electrically tunable Barium titanate (BTO) nanofins[J]. Nanomaterials, 11, 2023(2021).

    [111] Chen L, Hao Y, Zhao L et al. Multifunctional metalens generation using bilayer all-dielectric metasurfaces[J]. Optics Express, 29, 9332-9345(2021).

    [112] Chen L, Liu Y, Zhao L et al. Generation and conversion of a dual-band Laguerre-Gaussian beam with different OAM based on a bilayer metasurface[J]. Optical Materials Express, 12, 1163-1173(2022).

    [113] Lv S Y, Wang R, Luo W F et al. Multifunctional tunable visible light metalens based on double-layer Barium titanate[J]. Applied Optics, 61, 5121-5127(2022).

    [114] Yu P, Li J X, Liu N. Electrically tunable optical metasurfaces for dynamic polarization conversion[J]. Nano Letters, 21, 6690-6695(2021).

    [115] Ou X N, Zeng T B, Zhang Y et al. Tunable polarization-multiplexed achromatic dielectric metalens[J]. Nano Letters, 22, 10049-10056(2022).

    [116] Bosch M, Shcherbakov M R, Won K et al. Electrically actuated varifocal lens based on liquid-crystal-embedded dielectric metasurfaces[J]. Nano Letters, 21, 3849-3856(2021).

    [117] Yang J K, Jeong H S. Switchable metasurface with VO2 thin film at visible light by changing temperature[J]. Photonics, 8, 57(2021).

    Tools

    Get Citation

    Copy Citation Text

    Chao Feng, Tao He, Yuzhi Shi, Zhanshan Wang, Xinbin Cheng. Research Progress of Metasurface-Based Jones Matrix Modulation (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0123001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Aug. 29, 2023

    Accepted: Oct. 17, 2023

    Published Online: Feb. 6, 2024

    The Author Email: He Tao (hetao@tongji.edu.cn)

    DOI:10.3788/LOP232011

    Topics