Infrared and Laser Engineering, Volume. 50, Issue 3, 20210031(2021)

Quantum enhanced Doppler LiDAR based on integrated quantum squeezed light source(Invited)

Li Gao1... Xiaoli Zhang1, Jingting Ma2, Wenxiu Yao1, Qingwei Wang1, Yue Sun2, Zunlong Liu2, Yajun Wang1,3, Long Tian1,3, and Yaohui Zheng13 |Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
  • 2Beijing Huahang Radio Measurement Institute, Beijing 102401, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    References(21)

    [1] [1] Weitkamp C. Lidar: RangeResolved Optical Remote Sensing of the Atmosphere[M]. Geesthacht: Springer, 2005.

    [2] [2] Cracknell A P, Hayes L. Introduction to Remote Sensing[M]. 2nd ed. London: Tayl Francis, 2007.

    [3] C J Deng, L Pan, C L Wang, et al. Performance analysis of ghost imaging lidar in background light environment. Photon Res, 5, 431-435(2017).

    [4] Y C Zheng, Y Z Wang, C Y Yue. Technical and application development study of space-borne atmospheric environment observation lidar. Infrared and Laser Engineering, 47, 0302002(2018).

    [5] G N Wang, B Y Liu, C Z Feng, et al. Data quality control method for VAD wind field retrieval based on coherent wind lidar. Infrared and Laser Engineering, 47, 0230002(2018).

    [6] Z M Shen, T Zhao, Y C Wang, et al. Underwater target detection of chaotic pulse laser radar. Infrared and Laser Engineering, 48, 0406004(2019).

    [7] G L Wang, L P Liu, C J Qiu, et al. A study of wind field retrieval from Doppler lidar observations. Chinese Journal of Atmospheric Sciences, 34, 143-153(2010).

    [8] T W Wei, H Y Xia, J J Hu, et al. Simultaneous wind and rainfall detection by power spectrum analysis using a VAD scanning coherent Doppler lidar. Opt Express, 27, 31235-31245(2019).

    [9] L Jin. Research progress of quantum radar. Modern Radar, 39, 1-7(2017).

    [10] J Sun, H X Huang. Target properties in quantum radar detection. Journal of Microwaves, 35, 1-9(2019).

    [11] Q Wang, Y Zhang, L L Hao, et al. Super-resolving quantum LADAR with odd coherent superposition states sources at shot noise limit. Infrared and Laser Engineering, 44, 2569-2574(2015).

    [12] J D Zhang, Z J Zhang, Y Zhao, et al. Super-sensitivity interferometric quantum lidar with squeezed-vacuum injection. Infrared and Laser Engineering, 46, 0730002(2017).

    [13] S Lloyd. Enhanced sensitivity of photodetection via quantum illumination. Science, 321, 1463-1465(2008).

    [14] M Malik, O S Magaña-Loaiza, R W Boyd. Quantum-secured imaging. Appl Phys Lett, 101, 241103(2012).

    [15] E D Lopaeva, I R Berchera, I P Degiovanni, et al. Experimental realization of quantum illumination. Phys Rev Lett, 110, 153603(2013).

    [16] [16] Burdge G, Deibner G, Shaprio J, et al. Quantum Senss Program[M]. New Yk: Defense Advanced Research Projects Agency, 2009.

    [17] Z Dutton, J H Shapiro, S Guha. LADAR resolution improvement using receivers enhanced with squeezed-vacuum injection and phase-sensitive amplification. J Opt Soc Am B, 27, A63-A72(2010).

    [18] Q Wang, L L Hao, Y Zhang, et al. Optimal detection strategy for super-resolving quantum lidar. J Appl Phys, 119, 023109(2016).

    [19] Q Wang, L L Hao, Y Zhang, et al. Super-resolving quantum lidar: entangled coherent-state sources with binary-outcome photon counting measurement suffice to beat the shot-noise limit. Optics Express, 24, 5045-5056(2016).

    [20] Q Wang, L L Hao, H X Tang, et al. Super-resolving quantum LiDAR with even coherent states sources in the presence of loss and noise. Physics Letters A, 380, 3717-3723(2016).

    [21] X C Sun, Y J Wang, L Tian, et al. Detection of 13.8 dB squeezed vacuum states by optimizing the interference efficiency and gain of balanced homodyne detection. Chin Opt Lett, 17, 072701(2019).

    CLP Journals

    [1] Jun Hui, Hongzhou Chai, Minzhi Xiang, Zhenqiang Du, Kaidi Jin. Detection performance of spaceborne photon-counting LiDAR based on quantum enhancement[J]. Infrared and Laser Engineering, 2023, 52(4): 20220469

    [2] Yaoqiang Long, Xiao Shan, Wen Wu, Yan Liang. Low-noise GHz InGaAs/InP single-photon detector (invited)[J]. Infrared and Laser Engineering, 2023, 52(3): 20220901

    [3] Mao Ye, Hengquan Liu, Yiqiang Zhao, Zewen Sun, Bin Hu. Design and hardware implementation of modified Rife algorithm for FMCW LiDAR[J]. Infrared and Laser Engineering, 2022, 51(12): 20220222

    [4] Zijing Zhang, Jiaheng Xie, Mingwei Huang, [in Chinese]. Overview of quantum LiDAR (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20211102

    Tools

    Get Citation

    Copy Citation Text

    Li Gao, Xiaoli Zhang, Jingting Ma, Wenxiu Yao, Qingwei Wang, Yue Sun, Zunlong Liu, Yajun Wang, Long Tian, Yaohui Zheng. Quantum enhanced Doppler LiDAR based on integrated quantum squeezed light source(Invited)[J]. Infrared and Laser Engineering, 2021, 50(3): 20210031

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue—Lidar

    Received: Jan. 10, 2021

    Accepted: --

    Published Online: Jul. 15, 2021

    The Author Email:

    DOI:10.3788/IRLA20210031

    Topics