Acta Photonica Sinica, Volume. 52, Issue 10, 1052403(2023)

Single-mode Interband Cascade Lasers(Invited)

Shuman LIU1,2、*, Jinchuan ZHANG1,2, Xiaoling YE1,2, Junqi LIU1,2, Lijun WANG1,2, Ning ZHUO1,2, Shenqiang ZHAI1,2, Yuan LI1, and Fengqi LIU1,2
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
  • 2Center of Materials Science and Opto-Electronic Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    References(84)

    [1] R YANG. Infrared laser based on intersubband transitions in quantum wells. Supperlattices and Microstructures, 17, 77-83(1995).

    [2] J FAIST, F CAPASSO, D SIVCO et al. Quantum cascade laser. Science, 264, 553-556(1994).

    [3] Weilin YE, Xun HE, Yongxian MENG et al. Highly-accuract mid-infrared atmospheric methane sensor system. Acta Photonica Sinica, 46, 1128003(2017).

    [4] Zhiwei LIU, Ziwen LI, Yafei LI et al. Pressure measurement and compensation for mid-infrared methane detection. Acta Photonica Sinica, 47, 0230002(2018).

    [5] E TÜTÜNCÜ, M NÄGELE, S BECKER et al. Advanced photonic sensors based on interband cascade lasers for real-time mouse breath analysis. ACS Sensors, 3, 1743-1749(2018).

    [6] J SCHEUERMANN, P KLUCZYNSKI, K SIEMBAB et al. Interband cascade laser arrays for simultaneous and selective analysis of C1-C5 hydrocarbons in petrochemical industry. Applied Spectroscopy, 75, 336-342(2021).

    [7] I VURGAFTMAN, W BEWLEY, C CANEDY et al. Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption. Nature Communications, 2, 585(2011).

    [8] Ruiqing YANG, Lu LI, Yuchao JIANG. Interband cascade lasers: from original concept to practical devices. Progress in Physics, 34, 169-190(2014).

    [11] I VURGAFTMAN, W BEWLEY, C CANEDY et al. Interband cascade lasers with low threshold powers and high output powers. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1200210(2013).

    [12] I VURGAFTMAN, R WEIH, M KAMP et al. Interband cascade lasers. Journal of physics D: Applied Physics, 48, 123001(2015).

    [13] J MEYER, W BEWLEY, C CANEY et al. The interband cascade laser. Photonics, 7, 75(2020).

    [14] Yi ZHANG, Cheng'ao YANG, Jinming SHANG et al. Research progress of semiconductor interband cascade lasers. Acta Optica Sinica, 41, 0114004(2021).

    [15] Yi ZHANG, Yu ZHANG, Cheng'ao YANG et al. Research progress of 3~4 μm antimonide interband cascade laser. Infrared and Laser Engineering, 47, 1003003(2018).

    [16] H YANG, R YANG, J GONG et al. Mid-infrared widely tunable single-mode interband cascade lasers based on V-coupled cavitie. Optics Letters, 45, 2700-2703(2020).

    [17] H KOGELNIK, C SHANK. Coupled-wave theory of distributed feedback lasers. Journal of Applied Physics, 43, 2327-2335(1972).

    [18] C KIM, K KIM, W BEWLEY et al. Single-mode distributed-feedback interband cascade laser for the midwave infrared. Applied Physics Letters, 88, 191103(2006).

    [19] C KIM, M KIM, W BEWLEY et al. High-power single-mode distributed-feedback interband cascade lasers for the midwave-infrared. IEEE Photonics Technology Letters, 19, 158-160(2007).

    [20] C KIM, M KIM, J ABELL et al. Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 ℃. Applied Physics Letters, 101, 061104(2012).

    [21] C KIM, M KIM, W BEWLEY et al. Corrugated-sidewall interband cascade lasers with single-mode midwave-infrared emission at room temperature. Applied Physics Letters, 95, 231103(2009).

    [22] W BEWLEY, C KIM, M KIM et al. High-performance interband cascade lasers for λ = 3-4.5 µm. International Journal of High Speed Electronics and Systems, 21, 1250014(2012).

    [23] I VURGAFTMAN, W BEWLEY, C CANEDY et al. Interband cascade lasers with low threshold powers and high output powers. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1200210(2013).

    [24] C KIM, M KIM, J ABELL et al. Mid-infrared distributed-feedback interband cascade lasers, 8631, 86311O(2013).

    [25] C MERRITT, W BEWLEY, C CANEY et al. Distributed-feedback interband cascade lasers with reduced contact duty cycles, 9855, 98550C(2016).

    [26] R WEIH, L NÄHLE, S HÖFLING et al. Single mode interband cascade lasers based on lateral metal gratings. Applied Physics Letters, 105, 071111(2014).

    [27] M von EDLINGER, J SCHEUERMANN, R WEIH et al. Monomode interband cascade lasers at 5.2 μm for nitric oxide sensing. IEEE Photonics Technology Letters, 26, 480-482(2014).

    [28] M DALLNER, J SCHEUERMANN, L NÄHLE et al. InAs-based distributed feedback interband cascade lasers. Applied Physics Letters, 107, 181105(2015).

    [29] J SCHEUERMANN, R WEIH, M von EDLINGER et al. Single-mode interband cascade lasers emitting below 2.8 μm. Applied Physics Letters, 106, 161103(2015).

    [30] M von EDLINGER, J SCHEUERMANN, L NÄHLE et al. DFB interband cascade lasers for tunable laser absorption spectroscopy from 3 to 6 µm, 8993, 899318(2014).

    [31] J KOETH, M von EDLINGER, J SCHEUERMANN et al. Distributed feedback interband cascade lasers for applications in research and industry, 9382, 93820V(2015).

    [32] S HOFLING, R WEIH, M DALLNER et al. Mid-Infrared (~2.8 μm to ~7.1 μm) interband cascade lasers, 9550, 95500F.

    [33] J KOETH, M von EDLINGER, J SCHEUERMANN et al. Interband cascade laser sources in the mid-infrared for green photonics, 9767, 976712(2016).

    [34] J SCHEUERMANN, M von EDLINGER, R WEIH et al. Single-mode interband cascade laser sources for mid-infrared spectroscopic applications, 9855, 98550G(2016).

    [35] J KOETH, R WEIH, J SCHEUERMANN et al. Mid infrared DFB interband cascade lasers, 10403, 1040308(2017).

    [36] M von EDLINGER, J SCHEUERMANN, R WEIH et al. Widely-tunable interband cascade lasers for the mid-infrared, 9370, 93702A(2015).

    [37] R WEIH, J SCHEUERMANN. Monolithic single mode interband cascade lasers with wide wavelength tunability. Applied Physics Letters, 109, 201109(2016).

    [38] M FISCHER, M von EDLINGER, L NÄHLE et al. DFB lasers for sensing applications in the, 7945, 79450E(3).

    [39] S BECKER, J SCHEUERMANN, R WEIH et al. Laterally coupled DFB interband cascade laser with tapered ridge. Electronics Letters, 53, 743-744(2017).

    [40] J SCHEUERMANN, R WEIH, S BECKER et al. Single-mode interband cascade laser multiemitter structure for two-wavelength absorption spectroscopy. Optical Engineering, 57, 011008(2018).

    [41] Y JIANG, L LI, H YE et al. InAs-based single-mode distributed feedback interband cascade lasers. IEEE Journal of Quantum Electronics, 51, 2300307(2015).

    [42] R YANG, J HILL, B YANG et al. Continuous-wave operation of distributed feedback interband cascade lasers. Applied Physics Letters, 84, 3699-3701(2004).

    [43] R YANG, J HILL, K MANSOUR et al. Distributed feedback mid-IR interband cascade lasers at thermoelectric cooler temperatures. IEEE Journal of Selected Topics in Quantum Electronics, 13, 1074-1078(2007).

    [44] S FOROUHAR, C BORGENTUN, C FREZ et al. Reliable mid-infrared laterally-coupled distributed-feedback interband cascade lasers. Applied Physics Letters, 105, 051110(2014).

    [45] C BORGENTUN, C FREZ, R BRIGGS et al. Single-mode high-power interband cascade lasers for mid-infrared absorption spectroscopy. Optics Express, 23, 2446-2450(2015).

    [46] F XIE, M STOCKER, J PHAM et al. Distributed feedback interband cascade lasers with top grating and corrugated sidewalls. Applied Physics Letters, 112, 131102(2018).

    [47] R LEAVITT, J BRUNOA, J BRADSHAW et al. High performance interband cascade lasers at 3.8 microns, 8277, 82771E(2012).

    [48] C NING, R SUN, S LIU et al. GaSb surface grating distributed feedback interband cascade laser emitting at 3.25 μm. Optics Express, 30, 29007-29014(2022).

    [49] R KAZARINOV, C HENRY. Second-order distributed feedback lasers with mode selection provided by first-order radiation losses. IEEE Journal of Quantum Electronics, 21, 144-150(1985).

    [50] T MAKINO, J GLINSKI. Effects of radiation loss on the performance of second-order DFB semiconductor lasers. IEEE Journal of Quantum Electronics, 24, 73-82(1988).

    [51] M HOLZBAUER, R SZEDLAK, H DETZ et al. Substrate-emitting ring interband cascade lasers. Applied Physics Letters, 111, 171101(2017).

    [52] Jiachen LIU, Yongzhen HUANG, Youzeng HAO et al. Numerical simulation of noise characteristics for WGM microcavity lasers(invited). Acta Photonica Sinica, 51, 0251205(2022).

    [53] H KNOTIG, B HINKOV, R WEIH et al. Continuous-wave operation of vertically emitting ring interband cascade lasers at room temperature. Applied Physics Letters, 116, 131101(2020).

    [54] R SZEDLAK, A HARRER, M HOLZBAUER et al. Remote sensing with commutable monolithic laser and detector. ACS Photonics, 3, 1794-1798(2016).

    [55] IGA K . Vertical-cavity surface-emitting laser: Its conception and evolution. Japanese Journal of Applied Physics, 47, 1-10(2008).

    [56] O WITZEL, A KLEIN, C MEFFERT et al. VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines. Optics Express, 21, 19951-19965(2013).

    [57] I VURGAFTMAN, J MEYER. Mid-IR Vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics, 34, 147-156(1998).

    [58] W BEWLEY, C CANEDY, C KIM et al. Room-temperatrue mid-infrared interband cascade vertical-cavity surface-emitting lasers. Applied Physics Letters, 109, 151108(2016).

    [59] A ANDREJEW, S SPRENGEL, M AMANN. GaSb-based vertical-cavity surface-emitting lasers with an emission wavelength at 3 μm. Optics Letters[, 41, 2799-2802(2016).

    [60] V JAYARAMAN, B KOLASA, C LINDBLAD et al. Tunable room-temperature continuous-wave mid-infrared VCSELs, 11300, 113000M(2020).

    [61] R LANG, K DZURKO, A HARDY et al. Theory of grating-confined broad-area lasers. IEEE Journal of Quantum Electronics, 34, 2196-2209(1998).

    [62] R BARTOLO, W BEWLEY, I VURGAFTMAN et al. Mid-infrared angled-grating distributed feedback laser. Applied Physics Letters, 76, 3164-3166(2000).

    [63] I VURGAFTMAN, W BEWLEY, R BARTOLO et al. Far-field characteristics of mid-infrared angled-grating distributed feedback lasers. Journal of Applied Physics, 88, 6997-7005(2000).

    [64] I VURGAFTMAN, J MEYER. Photonic-crystal distributed-feedback lasers. Applied Physics Letters, 78, 1475-1477(2001).

    [65] I VURGAFTMAN, J MEYER. Photonic-crystal distributed-feedback quantum cascade lasers. IEEE Journal of Quantum Electronics, 38, 592-602(2002).

    [66] W BEWLEY, C FELIX, I VURGAFTMAN et al. Mid-infrared photonic-crystal distributed-feedback laser with enhanced spectral purity and beam quality. Applied Physics Letters, 79, 3221-3223(2001).

    [67] C FELIX, I VURGAFTMAN, W BEWLEY et al. High-brightness mid-infrared photonic-crystal distributed-feedback lasers. Journal of Modern Optics, 49, 801-810(2002).

    [68] W BEWLEY, C FELIX, I VURGAFTMAN et al. Mid-infrared photonic-crystal distributed-feedback lasers. Solid-State Electronics, 46, 1557-1566(2002).

    [69] W BEWLEY, C KIM, M KIM et al. Broad-stripe midinfrared photonic-crystal distributed-feedback lasers with laser-ablation confinement. Applied Physics Letters, 83, 5383-5385(2003).

    [70] C KIM, W BEWLEY, C CANEDY et al. Broad-stripe near-diffraction-limited mid-infrared laser with a second-order photonic-crystal distributed feedback grating. IEEE Photonics Technology Letters, 16, 1250-1252(2004).

    [71] I VURGAFTMAN, J MEYER. Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers. IEEE Journal of Quantum Electronics, 39, 689-700(2003).

    [72] I VURGAFTMAN, W BEWLEY, C CANEDY et al. Broad-area optical coherence in photonic-crystal distributed-feedback lasers, 4992, 118-129(2003).

    [73] M KIM, C KIM, W BEWLEY et al. Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared. Applied Physics Letters, 88, 191105(2006).

    [74] Y BAI, S DARVISH, S SLIVKEN et al. Electrically pumped photonic crystal distributed feedback quantum cascade lasers. Applied Physics Letters, 91, 141123(2007).

    [75] Y LIANG, Z WANG, J WOLF et al. Room temperature surface emission on large-area photonic crystal quantum cascade lasers. Applied Physics Letters, 114, 031102(2019).

    [76] C KIM, M KIM, W BEWLEY et al. Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributed-feedback grating. Applied Physics Letters, 92, 071110(2008).

    [77] C KIM, W BEWLEY, C CANEDY et al. Robust single-mode emission from mid-IR photonic crystal interband cascade lasers, 6900, 690003(2008).

    [78] M KIM, C CANEDY, W BEWLEY et al. Interband cascade laser emitting at λ=3.75 μm in continuous wave above room temperature. Applied Physics Letters, 92, 191110(2008).

    [79] C CANEDY, J ABELL, C MERRITT et al. Pulsed and CW performance of 7-stage interband cascade lasers. Optics Express, 22, 7702-7710(2014).

    [80] M YOSHIDA, M ZOYSA, K ISHIZAKI et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams. Nature Materials, 18, 121-128(2019).

    [81] T INOUE, M YOSHIDA, J GELLETA et al. General recipe to realize photonic-crystal surface emitting lasers with 100-W-to-1-kW single-mode operation. Nature Communications, 13, 3262(2022).

    [82] X ZHAO, C CAO, A DU et al. High performance interband cascade lasers with AlGaAsSb cladding layers. IEEE Photonics Technology Letters, 34, 291-294(2022).

    [83] L SHTERENGAS, R LIU, A STEIN et al. Continuous wave room temperature operation of the 2 μm GaSb-based photonic crystal surface emitting diode lasers. Applied Physics Letters, 122, 131102(2023).

    [84] Y LIANG, Z WANG, J WOLF et al. Room temperature surface emission on large-area photonic crystal quantum cascade lasers. Applied Physics Letters, 114, 031102(2019).

    [85] Songru LI, Sicong TIAN. Dirac photonic crystal application in surface emitting lasers. Journal of Optoelectronics·Laser, 33, 230-240(2022).

    [86] Rusong LI, Huanyu LU. Research on threshold gain and output optical power of photonic crystal surface emitting lasers. Laser & Optoelectronics Progress, 59, 0314004(2022).

    Tools

    Get Citation

    Copy Citation Text

    Shuman LIU, Jinchuan ZHANG, Xiaoling YE, Junqi LIU, Lijun WANG, Ning ZHUO, Shenqiang ZHAI, Yuan LI, Fengqi LIU. Single-mode Interband Cascade Lasers(Invited)[J]. Acta Photonica Sinica, 2023, 52(10): 1052403

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 19, 2023

    Accepted: Jul. 18, 2023

    Published Online: Dec. 5, 2023

    The Author Email: LIU Shuman (liusm@semi.ac.cn)

    DOI:10.3788/gzxb20235210.1052403

    Topics