Optics and Precision Engineering, Volume. 32, Issue 7, 1087(2024)
Collaborative classification of hyperspectral and LiDAR data based on CNN-transformer
[1] [1] 黄鸿, 张臻, 李政英. 面向高光谱影像分类的深度流形重构置信网络[J]. 光学 精密工程, 2021, 29(8): 1985-1998. doi: 10.37188/OPE.20212908.1985HUANGH, ZHANGZH, LIZH Y. Deep manifold reconstruction belief network for hyperspectral remote sensing image classification[J]. Opt. Precision Eng., 2021, 29(8): 1985-1998.(in Chinese). doi: 10.37188/OPE.20212908.1985
[2] [2] 张兵. 高光谱图像处理与信息提取前沿[J]. 遥感学报, 2016, 20(5): 1062-1090. doi: 10.11834/jrs.20166179ZHANGB. Advancement of hyperspectral image processing and information extraction[J]. Journal of Remote Sensing, 2016, 20(5): 1062-1090.(in Chinese). doi: 10.11834/jrs.20166179
[3] A D MA, A M FILIPPI, Z Y WANG et al. Fast sequential feature extraction for recurrent neural network-based hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 59, 5920-5937(2021).
[4] Q C LIU, L XIAO, J X YANG et al. Content-guided convolutional neural network for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 58, 6124-6137(2020).
[5] Z B ZAKARIA, M R ISLAM. Hybrid 3DNet: Hyperspectral Image Classification with Spectral-spatial Dimension Reduction using 3D CNN. International Journal of Computer Applications, 184, 6-11(2022).
[6] [6] 冯裴裴, 杨风暴, 卫红, 等. 不确定性理论在激光雷达数据地物分类方面的应用研究进展[J]. 光电技术应用, 2015, 30(5): 1. doi: 10.3969/j.issn.1673-1255.2015.05.001FENGP P, YANGF B, WEIH, et al. Research progress on uncertain theory for feature classification with LIDAR data[J]. Electro-Optic Technology Application, 2015, 30(5): 1.(in Chinese). doi: 10.3969/j.issn.1673-1255.2015.05.001
[7] [7] 白慧, 杨风暴. 基于高辨识复合衍生特征的LiDAR数据分类方法研究[J]. 激光与光电子学进展, 2021, 58(5): 0528001. doi: 10.3788/lop202158.0528001BAIH, YANGF B. LiDAR data classification method based on high recognition compound derivative feature[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0528001.(in Chinese). doi: 10.3788/lop202158.0528001
[8] Z LIU, H Z MAO, C Y WU et al. A ConvNet for the 2020s, 18, 11976-11986(2022).
[9] S DEBNATH, R H HU et al. ConvNeXt V2: co-designing and scaling ConvNets with masked autoencoders, 17, 16133-16142(2023).
[10] A DOSOVITSKIY, L BEYER, A KOLESNIKOV et al. An image is worth 16x16 words: transformers for image recognition at scale. ArXiv e-Prints(2020).
[11] M Y DING, B XIAO, N CODELLA et al.
[12] B N PATRO, V P NAMBOODIRI, V SRINIVAS AGNEESWARAN. SpectFormer: frequency and attention is what you need in a vision transformer. ArXiv e-Prints(2023).
[13] M PEDERGNANA, P R MARPU, M DALLA MURA et al. Classification of remote sensing optical and LiDAR data using extended attribute profiles. IEEE Journal of Selected Topics in Signal Processing, 6, 856-865(2012).
[14] M M ZHANG, W LI, R TAO et al. Information fusion for classification of hyperspectral and LiDAR data using IP-CNN. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-12(2022).
[15] Z X XUE, X TAN, X C YU et al. Deep hierarchical vision transformer for hyperspectral and LiDAR data classification. IEEE Transactions on Image Processing, 31, 3095-3110(2022).
[16] X D XU, W LI, Q RAN et al. Multisource remote sensing data classification based on convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 56, 937-949(2018).
[17] D F HONG, L R GAO, R L HANG et al. Deep encoder-decoder networks for classification of hyperspectral and LiDAR data. IEEE Geoscience and Remote Sensing Letters, 19, 1-5(2022).
[18] D F HONG, L R GAO, N YOKOYA et al. More diverse means better: multimodal deep learning meets remote-sensing imagery classification. IEEE Transactions on Geoscience and Remote Sensing, 59, 4340-4354(2021).
[19] X H WANG, Y N FENG, R X SONG et al. Multi-attentive hierarchical dense fusion net for fusion classification of hyperspectral and LiDAR data. Information Fusion, 82, 1-18(2022).
[20] K M HE, H Q FAN, Y X WU et al. Momentum contrast for unsupervised visual representation learning, 13, 9729-9738(2020).
[21] X L CHEN, H Q FAN, R B GIRSHICK et al. Improved baselines with momentum contrastive learning. arXiv preprint(2020).
[22] T CHEN, S KORNBLITH, M NOROUZI et al. A simple framework for contrastive learning of visual representations, 1597-1607(2020).
Get Citation
Copy Citation Text
Haibin WU, Shiyu DAI, Aili WANG, Iwahori YUJI, Xiaoyu YU. Collaborative classification of hyperspectral and LiDAR data based on CNN-transformer[J]. Optics and Precision Engineering, 2024, 32(7): 1087
Category:
Received: Oct. 23, 2023
Accepted: --
Published Online: May. 28, 2024
The Author Email: