Laser & Optoelectronics Progress, Volume. 57, Issue 21, 210001(2020)

Research Progress on Random Quasi-Phase Matching in Polycrystalline Materials

Liu Kefei1,2, Zhong Kai1,2、*, and Yao Jianquan1,2
Author Affiliations
  • 1天津大学精密仪器与光电子工程学院激光与光电子研究所, 天津 300072
  • 2天津大学光电信息技术教育部重点实验室, 天津 300072
  • show less
    References(50)

    [1] Powers P E, Joseph W H. Fundamentals of nonlinear optics[M]. Boca Raton: CRC press(2017).

    [2] Yao J Q[M]. Nonlinear optical frequency conversion and laser tuning technology(1995).

    [4] Yao J Q, Wang Y Y. Nonlinear optics and solid-state lasers: advanced concepts, tuning-fundamentals and applications[M]. Heidelberg: Springer(2012).

    [5] Zhong K, Shi W, Xu D G et al. Optically pumped terahertz sources[J]. Science China Technological Sciences, 60, 1801-1818(2017).

    [6] Peyghambarian N, Koch S W. Semiconductor nonlinear materials[M]. ∥Gibbs H M, Khitrova G, Peyghambarian N. Nonlinear photonics. Springer series in electronics and photonics.Heidelberg: Springer, 30, 7-60(1990).

    [7] Baudrier-Raybaut M, Haïdar R, Kupecek P et al. Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials[J]. Nature, 432, 374-376(2004).

    [9] Morozov E Y, Chirkin A S. Stochastic quasi-phase matching in nonlinear-optical crystals with an irregular domain structure[J]. Quantum Electronics, 34, 227-232(2004).

    [10] Ru Q T, Kawamori T, Lee N et al. Optical parametric oscillation in a random poly-crystalline medium: ZnSe ceramic[J]. Proceedings of SPIE, 1051, 1051615(2018).

    [12] Kurtz S K, Perry T T. A powder technique for the evaluation of nonlinear optical materials[J]. Journal of Applied Physics, 39, 3798-3813(1968).

    [13] Jia J R, Xue X L, Zhang H. Research on optical properties of CsSbSO4F2 crystal[J]. Journal of Synthetic Crystals, 48, 394-397(2019).

    [14] Tehranchi A, Kashyap R. Engineered gratings for flat broadening of second-harmonic phase-matching bandwidth in MgO-doped lithium niobate waveguides[J]. Optics Express, 16, 18970-18975(2008).

    [16] Molina P. Ramírez M D L O, Bausá L. Strontium Barium niobate as a multifunctional two-dimensional nonlinear “photonic glass”[J]. Advanced Functional Materials, 18, 709-715(2008).

    [17] Kawai S, Ogawa T, Lee H et al. Second-harmonic generation from needlelike ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals[J]. Applied Physics Letters, 73, 768-770(1998).

    [18] Trull J, Cojocaru C, Fischer R et al. Second-harmonic parametric scattering in ferroelectric crystals with disordered nonlinear domain structures[J]. Optics Express, 15, 15868-15877(2007).

    [19] Wang W J, Roppo V, Kalinowski K et al. Third-harmonic generation via broadband cascading in disordered quadratic nonlinear media[J]. Optics Express, 17, 20117-20123(2009).

    [20] Roppo V, Wang W J, Kalinowski K et al. The role of ferroelectric domain structure in second harmonic generation in random quadratic media[J]. Optics Express, 18, 4012-4022(2010).

    [21] Sheng Y, Ma D L, Krolikowski W. Randomized nonlinear photonic crystal for broadband optical frequency conversion[J]. Journal of Physics B, 46, 215401(2013).

    [23] Le Grand Y, Rouède D, Odin C et al. Second-harmonic scattering by domains in RbH2PO4 ferroelectrics[J]. Optics Communications, 200, 249-260(2001).

    [24] Trabs P, Noack F, Aleksandrovsky A S et al. Generation of coherent radiation in the vacuum ultraviolet using randomly quasi-phase-matched strontium tetraborate[J]. Optics Letters, 41, 618-621(2016).

    [25] Sorokin E, Sorokina I T. Femtosecond operation and random quasi-phase-matched self-doubling of ceramic Cr: ZnSe laser. [C]∥Conference on Lasers and Electro-Optics 2010, May 16-21, 2010, San Jose, California. Washington, D.C.: OSA, CTuGG2(2010).

    [26] Šuminas R, Tamošauskas G, Valiulis G et al. Multi-octave spanning nonlinear interactions induced by femtosecond filamentation in polycrystalline ZnSe[J]. Applied Physics Letters, 110, 241106(2017).

    [27] Vasilyev S, Moskalev I, Mirov M et al. Mid-IR Kerr-lens mode-locked polycrystalline Cr∶ZnS and Cr∶ZnSe lasers with intracavity frequency conversion via random quasi-phase-matching[J]. Proceedings of SPIE, 9731, 97310B(2016).

    [28] Vasilyev S, Moskalev I, Mirov M et al. Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr∶ZnS and Cr∶ZnSe[J]. Optical Materials Express, 7, 2636-2650(2017).

    [29] Vasilyev S, Smolski V, Peppers J et al. Middle-IR frequency comb based on Cr∶ZnS laser[J]. Optics Express, 27, 35079-35087(2019).

    [30] Vasilyev S, Moskalev I, Smolski V et al. Octave-spanning Cr∶ZnS femtosecond laser with intrinsic nonlinear interferometry[J]. Optica, 6, 126-127(2019).

    [32] Vasilyev S, Moskalev I, Smolski V et al. Multi-octave visible to long-wave IR femtosecond continuum generated in Cr∶ZnS-GaSe tandem[J]. Optics Express, 27, 16405-16413(2019).

    [33] Zhang J, Fritsch K, Wang Q et al. Intra-pulse difference-frequency generation of mid-infrared (2.7--20 μm) by random quasi-phase-matching[J]. Optics Letters, 44, 2986-2989(2019).

    [34] Kupfer R, Quevedo H J, Smith H L et al. Cascade random-quasi-phase-matched harmonic generation in polycrystalline ZnSe[J]. Journal of Applied Physics, 124, 243102(2018).

    [35] Ru Q T, Kawamori T, Vasilyev S et al. Broadband randomly phase matched OPO using a thin 0.5-mm ZnSe ceramic and a dispersion-free cavity. [C]∥Conference on Lasers and Electro-Optics, May 5-10, 2019, San Jose, California. Washington, D.C.: OSA, STh3J, 6(2019).

    [36] Yu Morozov E, Kaminskii A, Chirkin A S et al. Second optical harmonic generation in nonlinear crystals with a disordered domain structure[J]. Journal of Experimental and Theoretical Physics Letters, 73, 647-650(2001).

    [38] Kawamori T, Ru Q T, Vodopyanov K L. Comprehensive model for randomly phase-matched frequency conversion in zinc-blende polycrystals and experimental results for ZnSe[J]. Physical Review Applied, 11, 054015(2019).

    [39] Marsaglia G. Choosing a point from the surface of a sphere[J]. Annals of Mathematical Statistics, 43, 645-646(1972).

    [40] Muller M E. A note on a method for generating points uniformly on n-dimensional spheres[J]. Communications of the ACM, 2, 19-20(1959).

    [41] Xiong Z X[M]. Fractal study of ceramic materials, 44-56(2000).

    [42] Chen X, Gaume R. Non-stoichiometric grain-growth in ZnSe ceramics for χ(2) interaction[J]. Optical Materials Express, 9, 400-409(2019).

    [43] Cao J B. Geometrical modeling and FEM analysis of electronic ceramics[D]. Tianjin: Tianjin University(2006).

    [44] Wang Y F. 3D modeling and numerical simulation analysis for polycrystalline metal under finite deformation Xi'an :[D]. Xidian University(2018).

    [45] Gu C F. Research on ratcheting of rolling magnesium alloy and microstructure simulation[D]. Nanjing: Nanjing University of Science and Technology(2012).

    [46] Zhang F G. Numerical simulation of micro-upsetting process in polycrystalline plasticity model[D]. Shanghai: Shanghai JiaoTong University(2011).

    [47] Fang B. Simulation study on microstructure evolution of ceramic tool materials during fabrication[D]. Jinan: Shandong University(2007).

    [48] Zhou Y K, Sun L H, Li Y[M]. Ceramic surface technology, 249-276(2007).

    [49] Benedetti I, Barbe F. Modelling polycrystalline materials: an overview of three-dimensional grain-scale mechanical models[J]. Journal of Multiscale Modelling, 5, 1350002(2013).

    [50] Jiang Z, Zhao J, Xie H[M]. Microforming technology: theory, simulation and practice, 271-272(2017).

    Tools

    Get Citation

    Copy Citation Text

    Liu Kefei, Zhong Kai, Yao Jianquan. Research Progress on Random Quasi-Phase Matching in Polycrystalline Materials[J]. Laser & Optoelectronics Progress, 2020, 57(21): 210001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: May. 7, 2020

    Accepted: --

    Published Online: Nov. 9, 2020

    The Author Email: Kai Zhong (zhongkai@tju.edu.cn)

    DOI:10.3788/LOP57.210001

    Topics