Journal of Synthetic Crystals, Volume. 49, Issue 9, 1569(2020)

Thermal Transport Study of Engineered Synthetic Crystal Microstructures

GENG Zhiming1... DI Chen1, FANG Ke1, ZHAN Ruonan1, YUAN Ziyuan1, YAN Xuejun1,*, LU Hong1,2, LU Minghui1,2, and CHEN Yanfeng12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(123)

    [1] [1] Tritt T M. Thermal conductivity: theory, properties, and applications[M]. New York: Kluwer Academic/Plenum Publishers, 2004: 2.

    [2] [2] Kaviany M. Heat transfer physics[M]. London: Cambridge University Press, 2014: 13.

    [3] [3] Lindsay L, Broido D A, Reinecke T L. Thermal conductivity and large isotope effect in GaN from first principles[J]. Physical Review Letters, 2012, 109: 095901.

    [4] [4] Song Y M, Xie Y, Malyarchuk V, et al. Digital cameras with designs inspired by the arthropod eye[J]. Nature, 2013, 497: 95-99.

    [5] [5] Thompson S E, Parthasarathy S. Moore’s law: the future of Si microelectronics[J]. Materials Today, 2006, 9: 20-25.

    [6] [6] Vassighi A, Sachdev M. Thermal and power management of integrated circuits[M]. New York: Springer, 2006.

    [7] [7] Luo Y, Jiang Y, Feng J, et al. Synthesis of white cement bonded porous fumed silica-based composite for thermal insulation with low thermal conductivity via a facile cast-in-place approach[J]. Construction and Building Materials, 2019, 206: 620-629.

    [8] [8] Sun Y, Gao P, Geng F, et al. Thermal conductivity and mechanical properties of porous concrete materials[J]. Materials Letters, 2017, 209: 349-352.

    [9] [9] Li N, Ren J, Wang L, et al. Colloquium: phononics:manipulating heat flow with electronic analogs and beyond[J]. Reviews of Modern Physics, 2012, 84: 1045-1066.

    [10] [10] Roberts N A, Walker D G. A review of thermal rectification observations and models in solid materials[J]. International Journal of Thermal Sciences, 2011, 50(5): 648-662.

    [11] [11] Li B, Wang L, Casati G. Thermal diode: rectification of heat flux[J]. Physical Review Letters, 2004, 93(18):184301.

    [12] [12] Yang N, Zhang G, Li B. Thermal rectification in asymmetric graphene ribbons[J]. Applied Physics Letters, 2009, 95: 033107.

    [13] [13] Wang L, Li B. Thermal memory: a storage of phononic information[J]. Physical Review Letters, 2008, 101: 267203.

    [14] [14] Xie R, Bui C T, Varghese B, et al. An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams[J]. Advanced Functional Materials, 2011, 21: 1602-1607.

    [15] [15] Kubytskyi V, Biehs S A, Abdallah P B. Radiative bistability and thermal memory[J]. Physical Review Letters, 2014, 113: 074301.

    [16] [16] Nishikawa K, Yatsugi K, Kishida Y, et al. Temperature-selective emitter[J]. Applied Physics Letters, 2019, 114: 211104.

    [17] [17] Geng Z M, Shi D L, Shi L, et al. Conventional sintered Cu2-xSe thermoelectric material[J]. Journal of Materiomics, 2019, 5: 626-633.

    [18] [18] Snyder G J, Toberer E S. Complex thermoelectric materials[J]. Materials for Sustainable Energy, 2010, 6: 101-110.

    [19] [19] Tan G, Zhao L D, Kanatzidis M G. Rationally designing high-performance bulk thermoelectric materials[J]. Chemical Reviews, 2016, 116(19): 12123-12149.

    [20] [20] Zhang X, Zhao L D. Thermoelectric materials:energy conversion between heat and electricity[J]. Journal of Materiomics, 2015, 1(2): 92-105.

    [21] [21] Mori T. Novel principles and nanostructuring methods for enhanced thermoelectrics[J]. Small, 2017, 13:1702013.

    [22] [22] Szczech J R, Higgins J M, Jin S. Enhancement of the thermoelectric properties in nanoscale and nanostructured materials[J]. Journal of Materials Chemistry, 2011, 12: 4037-4055.

    [23] [23] Christensen M, Abrahamsen A B, Christensen N B, et al. Avoided crossing of rattler modes in thermoelectric materials[J]. Nature materials, 2008, 7: 811-815.

    [24] [24] Cahill D G, Braun P V, Chen G, et al. Nanoscale thermal transport[J]. Journal of Applied Physics, 2003, 93: 793.

    [25] [25] Song H, Liu J, Liu B, et al. Two-dimensional materials for thermal management applications[J]. Joule, 2018, 2: 442-463.

    [26] [26] Angelescu D E, Cross M C, Roukes M L. Heat transport in mesoscopic systems[J]. Superlattices and Microstructures, 1998, 23: 673-689.

    [27] [27] Rego L G, kirczenow G. Quantized thermal conductance of dielectric quantum wires[J]. Physical Review Letters, 1998, 81(1): 232-235.

    [28] [28] Blencowe M P. Quantum energy flow in mesoscopic dielectric structures[J]. Physical Review B, 1999, 59(7): 4992-4998.

    [29] [29] Cross M C, Lifshitz R. Elastic wave transmission at an abrupt junction in a thin plate with application to heat transport and vibrations in mesoscopic systems[J]. Physical Review B, 2001, 64: 085324.

    [30] [30] Steslicka M, Kucharczyk R, Akjouj A, et al. Localised electronic states in semiconductor superlattices[J]. Surface Science Reports, 2002, 47(1): 93-196.

    [31] [31] Kucharczyk R, Steslicka M. Density-of-states formalism for multi-quantum-barrier structures[J]. Solid State Communications, 1992, 84(2): 727-730.

    [32] [32] Joshi A A, Majumdar A. Transient ballistic and diffusive phonon heat transport in thin films[J]. Journal of Applied Physics, 1993, 74(1): 31-39.

    [33] [33] Chen G. Ballistic-diffusive heat-conduction equation[J]. Physical Review Letters, 2001, 86(11): 2297-2300.

    [34] [34] Yang R, Chen G, Laroche M, et al. Simulation of nanoscale multidimensional transient heat conduction problems using ballistic-diffusive equations and phonon Boltzmann equation[J]. Journal of Heat Transfer, 2005, 127: 298-306.

    [35] [35] Johnson J A, Maznev A A, Bulsara M T, et al. Phase-controlled, heterodyne laser-induced transient grating measurements of thermal transport properties in opaque material[J]. Journal of Applied Physics, 2012, 111: 023503.

    [36] [36] Khalatnikov I M. Heat exchange between a solid and He II[J]. Soviet Physics-JETP, 1952, 22: 687.

    [37] [37] Cahill D G, Goodson K, Majumdar A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures[J]. Journal of Heat Transfer, 2002, 124(2): 223-241.

    [38] [38] Costescu R M, Wall M A, Cahill D G. Thermal conductance of epitaxial interfaces[J]. Physical Review B, 2003, 67: 054302.

    [39] [39] Swartz E T, Pohl R O. Thermal boundary resistance[J]. Reviews of Modern Physics, 1989, 61(3): 605-668.

    [40] [40] Swartz E T, Pohl R O. Thermal resistance at interfaces[J]. Applied Physics Letters, 1987, 51(26): 2200.

    [41] [41] Lisa D B, Patrick E P, Prasher R S. Variations of acoustic and diffuse mismatch models in predicting thermal-boundary resistance[J]. Journal of Thermophysics and Heat Transfer, 2000, 14(2): 144.

    [42] [42] Patrick E H. Thermal transport across solid interfaces with nanoscale imperfections: effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance[J]. ISRN Mechanical Engineering, 2013, 2013: 682586.

    [43] [43] Duda J C, Patrick E H, Smoyer J L, et al. On the assumption of detailed balance in prediction of diffusive transmission probability during interfacial transport[J]. Nanoscale and Microscale Thermophysical Engineering, 2010, 14(1): 21-33.

    [44] [44] Patrick E H, Duda J C, Norris P M. Anharmonic phonon interactions at interfaces and contributions to thermal boundary conductance[J]. Journal of Heat Transfer, 2011, 133(6): 062401.

    [45] [45] Duda J C, Norris P M, Patrick E H. On the linear temperature dependence of phonon thermal boundary conductance in the classical limit[J]. Journal of Heat Transfer, 2011, 133(7): 074501.

    [46] [46] Patrick E H, Norris P M. Effects of joint vibrational states on thermal boundary conductance[J]. Nanoscale and Microscale Thermophysical Engineering, 2007, 11(3-4): 247-257.

    [47] [47] Patrick E H. Multiple phonon processes contributing to inelastic scattering during thermal boundary conductance at solid interfaces[J]. Journal of Applied Physics, 2009, 106: 013528.

    [48] [48] Hua C, Chen X, Ravichandran N K, et al. Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces[J]. Physical Review B, 2017, 95: 205423.

    [49] [49] Majumdar A. Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces[J]. Applied Physics Letters, 2004, 84: 4768-4770.

    [50] [50] Gundrum B C, Cahill D G, Averback R S. Thermal conductance of metal-metal interfaces[J]. Physical Review B, 2005, 72: 245426.

    [51] [51] Huberman M L, Overhauser A W. Electronic Kapitza conductance at a diamond-Pb interface[J]. Physical Review B, 1994, 50: 2865.

    [52] [52] Sadasivam S, Waghmare U V, Fisher T S, et al. Electron-phonon coupling and thermal conductance at a metal-semiconductor interface:first-principles analysis[J]. Journal of Applied Physics, 2015, 117: 134502.

    [53] [53] Stoner R J, Maris H J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K[J]. Physical Review B, 1993, 48: 16373.

    [54] [54] Lyeo H K, Cahill D G. Thermal conductance of interfaces between highly dissimilar materials[J]. Physical Review B, 2006, 73: 144301.

    [55] [55] Giri A, Gaskins J T, Donovan B F, et al. Mechanisms of nonequilibrium electronphonon coupling and thermal conductance at interfaces[J]. Journal of Applied Physics, 2015, 117: 105105.

    [56] [56] Collins K C, Chen S, Chen G. Effects of surface chemistry on thermal conductance at aluminum-diamond interfaces[J]. Applied Physics Letters, 2010, 97: 083102.

    [57] [57] Patrick E H, Baraket M, Barnat E V, et al. Manipulating thermal conductance at metal-graphene contacts via chemical functionalization[J]. Nano Letters, 2012, 12(2): 590-595.

    [58] [58] Hopkins P E, Phinney L M, Serrano J R, et al. Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces[J]. International Heat Transfer Conference, 2010, IHTC14: 22268.

    [59] [59] Hsieh W P, Lyons A S, Pop E, et al. P[61] thermal conductance of weak interfaces[J]. Physical Review B, 2011, 84: 184107.

    [60] [60] Freedy K M. Titanium contacts to graphene: process-induced varibility in electronics and thermal transport[J]. Nanotechnology, 2018, 29: 145201.

    [61] [61] Sinha V, Gengler J J, Muratore C, et al. Effects of disorder state and interfacial layer on thermal transport in copper/diamond system[J]. Journal of Applied Physics, 2015, 117: 074305.

    [62] [62] Chang G, Sun F, Duan J, et al. Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond[J]. Acta Materialia, 2018, 160: 235-246.

    [63] [63] Chang G, Sun F, Wang L, et al. Regulated interfacial thermal conductance between Cu and diamond by a TiC interlayer for thermal management applications[J]. ACS Applied Materials & Interfaces, 2019, 11: 26507-26517.

    [64] [64] Losego M D, Grady M E, Sottos N R, et al. Effects of chemical bonding on heat transport across interfaces[J]. Nature Materials, 2012, 11: 502-506.

    [65] [65] Majumdar S, Sierra-Suarez J A, Schiffres S N, et al. Vibrational mismatch of metal leads controls thermal conductance of self-assembled monolayer junctions[J]. Nano Letters, 2015, 15: 2985-2991.

    [66] [66] Zheng K, Sun F, Zhu J, et al. Enhancing the thermal conductance of polymer and sapphire interface via self-assembled monolayer[J]. ACS nano, 2016, 10: 7791-7798.

    [67] [67] Luo T, Lloyd J R. Equilibrium molecular dynamics study of lattice thermal conductivity/conductance of Au-SAM-Au junctions[J]. Journal of Heat Transfer, 2010, 132(3): 032401.

    [68] [68] Luo T, Lloyd J R. Enhancement of thermal energy transport across graphene/graphite and polymer interfaces-A molecular dynamics study[J]. Advanced Functional Materials, 2012, 22: 2495.

    [69] [69] Shi D, Geng Z, Shi L, et al. Thermal stability study of Cu1.97Se superionic thermoelectric materials[J]. Journal of Materials Chemistry C, 2020, DOI: 10.1039/d0tc01085e.

    [70] [70] Liu Y, Xie H, Fu C, et al. Demonstration of a phonon-glass electron-crystal strategy in (Hf,Zr)NiSn half-Heusler thermoelectric materials by alloying[J]. Journal of Materials Chemistry A, 2015, 3: 22716-22722.

    [71] [71] Liu C, Chen Y, Dames C. Electric-field-controlled thermal switch in ferroelectric materials using first-principles calculations and domain-wall engineering[J]. Physical Review Applied, 2019, 11: 044002.

    [72] [72] Ashcro N W, Mermin N D. Solid state physics[M]. New York: Thomson Learning, 1976.

    [73] [73] Callaway J, Baeyer H C. Effect of point imperfections on lattice thermal conductivity[J]. Physical Review Journals Archive, 1960, 120: 1149.

    [74] [74] Klemens P. Thermal resistance due to point defects at high temperatures[J]. Physical Review Journals Archive, 1960, 119: 507.

    [75] [75] Katcho N A, Carrete J, Li W, et al. Effect of nitrogen and vacancy defects on the thermal conductivity of diamond: an ab initio Green's function approach[J]. Physical Review B, 2014, 90: 094117.

    [76] [76] Protik N H, Carrete J, Katcho N A, et al. Ab initio study of the effect of vacancies on the thermal conductivity of boron arsenide[J]. Physical Review B, 2016, 94: 045207.

    [77] [77] Polanco C A, Lindsay L. Ab initio phonon point defect scattering and thermal transport in graphene[J]. Physical Review B, 2018, 97: 014303.

    [78] [78] Polanco C A, Lindsay L. Thermal conductivity of InN with point defects from first principles[J]. Physical Review B, 2018, 98: 014306.

    [79] [79] Katre A, Carrete J, Dongre B, et al. Exceptionally strong phonon scattering by B substitution in cubic SiC[J]. Physical Review Letters, 2017, 119: 075902.

    [80] [80] Roychowdhury S, Biswas R K, Dutta M, et al. Phonon localization and entropy-driven point defects lead to ultralow thermal conductivity and enhanced thermoelectric performance in (SnTe)1-2x(SnSe)x(SnS)x[J]. ACS Energy Letters, 2019, 4(7): 1658-1662.

    [81] [81] Jiang G, He J, Zhu T, et al. High performance Mg2(Si,Sn) solid solutions: a point defect chemistry approach to enhancing thermoelectric properties[J]. Advanced Functional Materials, 2014, 24: 3776-3781.

    [82] [82] Hazan E, Ben-Yehuda O, Madar N, et al. Functional graded germanium-lead chalcogenide-based thermoelectric module for renewable energy applications[J]. Advanced Energy Materials, 2015, 5: 1500272.

    [83] [83] Zhang J, Song L, Pedersen S H, et al. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands[J]. Nature Communications, 2017, 8: 13901.

    [84] [84] Xie H, Wang H, Pei Y, et al. Beneficial contribution of alloy disorder to electron and phonon transport in half-Heusler thermoelectric materials[J]. Advanced Functional Materials, 2013, 23: 5123.

    [85] [85] Fu C, Bai S, Liu Y, et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials[J]. Nature Communications, 2015, 6: 8144.

    [86] [86] Kim K S, Kim Y M, Mun H, et al. Direct observation of inherent atomic-scale defect disorders responsible for high-performance Ti1-xHfxNiSn1-ySbyhalf-Heusler thermoelectric alloys[J]. Advanced Materials, 2017, 29: 1702091.

    [87] [87] Xia K, Liu Y, Anand S, et al. Enhanced thermoelectric performance in 18-electron Nb0.8CoSb half-Heusler compound with intrinsic Nb vacancies[J]. Advanced Functional Materials, 2018, 28: 1705845.

    [88] [88] Balandin A A. Nanophononics: phonon engineering in nanostructures and nanodevices[J]. Journal of Nanoscience and Nanotechnology, 2005, 5(7): 1015-1022.

    [89] [89] Khitun A, Balandin A, Liu J L, et al. In-plane lattice thermal conductivity of a quantum-dot superlattice[J]. Journal of Applied Physics, 2000, 88: 696.

    [90] [90] Khitun A, Balandin A, Liu J L, et al. The effect of the long-range order in a quantum dot array on the in-plane lattice thermal conductivity[J]. Superlattices and Microstructures, 2001, 30(1): 1-8.

    [91] [91] Liu J L, Khitun A, Wang K L, et al. Cross-plane thermal conductivity of self-assembled Ge quantum dot superlattices[J]. Physical Review B, 2003, 67: 165333.

    [92] [92] Pernot G, Stoffel M, Savic I, et al. Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers[J]. Nature Materials, 2010, 9: 491-495.

    [93] [93] Hopkins P E, Duda J C, Petz C W, et al. Controlling thermal conductance through quantum dot roughening at interfaces[J]. Physical Review B, 2011, 84: 035438.

    [94] [94] Bao Y, Balandin A A, Liu J L, et al. Experimental investigation of Hall mobility in Ge/Si quantum dot superlattices[J]. Applied Physics Letters, 2004, 84: 3355.

    [95] [95] Narayanamurti V, Strmer H L, Chin M A, et al. Selective transmission of high-frequency phonons by a superlattice:the dielectric phonon filter[J]. Physical Review Letters, 1979, 43: 2012-2016.

    [96] [96] Shi L, Dames C, Lukes J R, et al. Evaluating broader impacts of nanoscale thermal transport research[J]. Nanoscale and Microscale Thermophysical Engineering, 2015, 19: 127-165.

    [97] [97] Chen G. Phonon transport in low-dimensional structures[J]. Semiconductors and Semimetals, 2001, 71: 203-259.

    [98] [98] Cahill D G, Ford W K, Goodson K E, et al. Nanoscale thermal transport[J]. Journal of Applied Physics, 2003, 93: 793.

    [99] [99] Yao T. Thermal properties of AlAs/GaAs superlattices[J]. Applied Physics Letters, 1987, 51: 1798.

    [100] [100] Hyldgaard P, Mahan G D. Thermal conductivity[M]. Lancaster: Technomic, 1995: 172.

    [101] [101] Lee S M, Cahill D G, Venkatasubramanian R. Thermal conductivity of Si-Ge superlattices[J]. Applied Physics Letters, 1997, 70: 2957.

    [102] [102] Venkatasubramanian R. Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures[J]. Physical Review B, 2000, 61: 3091.

    [103] [103] Capinski W S, Maris H J, Ruf T, et al. Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique[J]. Physical Review B, 1999, 59: 8105.

    [104] [104] Colvard C, Merlin R, Klein M V, et al. Observation of folded acoustic phonons in a semiconductor superlattice[J]. Physical Review Letters, 1980, 45: 298.

    [105] [105] Chen G. Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures[J]. Journal of Heat Transfer, 1997, 119(2): 220-229.

    [106] [106] Yu X Y, Chen G. Temperature dependence of thermophysical properties of GaAs/AlAs periodic structure[J]. Applied Physics Letters, 1995, 67: 3554.

    [107] [107] Shenogin S, Xue L, Ozisik R, et al. Role of thermal boundary resistance on the heat flow in carbon-nanotube composites[J]. Journal of Applied Physics, 2004, 95: 8136.

    [108] [108] Borca-Tasciuc T, Liu W, Liu J, et al. Thermal conductivity of symmetrically strained Si/Ge superlattices[J]. Superlattices and Microstructures, 2000, 28(3): 199-206.

    [109] [109] Carruthers P. Theory of thermal conductivity of solids at low temperatures[J]. Reviews of Modern Physics, 1961, 33(1): 92-138.

    [110] [110] Chen G, Neagu M. Thermal conductivity and heat transfer in superlattices[J]. Applied Physics Letters, 1997, 71: 2761.

    [111] [111] Kato H, Maris H J, Tamura S. Resonant-mode conversion and transmission of phonons in superlattices[J]. Physical Review B, 1996, 53: 7884.

    [112] [112] Hyldgaard P, Mahan G D. Phonon superlattice transport[J]. Physical Review B, 1997, 56: 10754.

    [113] [113] Tamura S, Tanaka Y, Maris H J. Phonon group velocity and thermal conduction in superlattices[J]. Physical Review B, 1999, 60: 2627.

    [114] [114] Simkin M V, Mahan G D. Minimum thermal conductivity of superlattices[J]. Physical Review Letters, 2000, 84: 927.

    [115] [115] Bies W E, Radtke R J, Ehrenreich H. Phonon dispersion effects and the thermal conductivity reduction in GaAs/AlAs superlattices[J]. Journal of Applied Physics, 2000, 88: 1498.

    [116] [116] Kiselev A A, Kim K W, Stroscio M A. Thermal conductivity of Si/Ge superlattices: a realistic model with a diatomic unit cell[J]. Physical Review B, 2000, 62: 6896.

    [117] [117] Chen G. Phonon wave heat conduction in thin films and superlattices[J]. Journal of Heat Transfer, 1999, 121(4): 945-953.

    [118] [118] Daly B C, Maris H J, Imamura K, et al. Molecular dynamics calculation of the thermal conductivity of superlattices[J]. Physical Review B, 2002, 66: 024301.

    [119] [119] Tellier C R, Tosser A J. Size effects in thin films[M]. New York: Elsevier, 1982.

    [120] [120] Yang B, Chen G. Partially coherent phonon heat conduction in superlattices[J]. Physical Review B, 2003, 67: 195311.

    [121] [121] Caylor J R, Coonley K, Stuart J, et al. Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity[J]. Applied Physics Letters, 2005, 87: 023105.

    [122] [122] Chen G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices[J]. Physical Review B, 1998, 57: 14958-14973.

    [123] [123] Luckyanova M N, Garg J, Esfarjani K, et al. Coherent phonon heat conduction in superlattices[J]. Science, 2012, 338: 936-939.

    CLP Journals

    [1] ZHANG Zhao, ZHANG Lei, GUO Jiangchuan, LI Jiarui, WANG Yifei. Self-Collimation Effect of Wave Propagation in Phononic Crystals[J]. Journal of Synthetic Crystals, 2021, 50(7): 1371

    Tools

    Get Citation

    Copy Citation Text

    GENG Zhiming, DI Chen, FANG Ke, ZHAN Ruonan, YUAN Ziyuan, YAN Xuejun, LU Hong, LU Minghui, CHEN Yanfeng. Thermal Transport Study of Engineered Synthetic Crystal Microstructures[J]. Journal of Synthetic Crystals, 2020, 49(9): 1569

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Nov. 11, 2020

    The Author Email: Xuejun YAN (xjyan@nju.edu.cn;陈延峰|yfchen@nju.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics