Acta Photonica Sinica, Volume. 40, Issue 8, 1137(2011)
Novel Compact Low Refractive Index Contrast Silica-on-Silicon AWG
[1] [1] BARBARIN Y, LEIJTENS X J M, BENTE E A J M, et al. Extremely small AWG demultiplexer fabricated on InP by using a double-etch process[C]. The Integrated Photonics Research (IPR) , San Francisco, California , USA, 2004, Paper IThG4.
[2] [2] SMIT M K. Progress in AWG design and technology[C]. The Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components, Palermo, Italy, 2005, 26-31.
[3] [3] TAKADA K, ABE M, SHIBATA M, et al. Low-crosstalk 10 GHz-spaced 512-channel arrayed-waveguide grating multi/demultiplexer fabricated on a 4-in wafer[J]. IEEE Photonics Technology Letters, 2001, 13: 1182-1184.
[4] [4] MARU K, OKAWA M, ABE Y, et al. Silica-based 2.5%-Δ arrayed waveguide grating using simple polarisation compensation method with core width adjustment[J]. Electronics Letters, 2007, 43(1): 26-27.
[5] [5] KOHTOKU M. Low-loss compact silica- based AWG using deep ridge waveguide[C]. Presented at the Integrated Photonics Research and Applications, San Diego, California, USA, 2005, Paper ITuF1.
[6] [6] POPOVIC M, WADA K, AKIYAMA S, et al. Air trenches for sharp silica waveguide bends[J]. Journal of Lightwave Technology, 2002, 20(9): 1762-1772.
[7] [7] AKIYAMA S, POPOVIC M A, RAKICH P T, et al. Air trench bends and splitters for dense optical integration in low index contrast [J]. Journal of Lightwave Technology, 2005, 23(7): 2271-2277.
[8] [8] ITO J, TSUDA H. Small bend structures using trenches filled with low-refractive index material for miniaturizing silica planar lightwave circuits [J]. Journal of Lightwave Technology, 2009, 27(6): 786-790.
[9] [9] LI De-lu, MA Chun-sheng, WANG Yu-hai, et al. Optimum design of polymeric arrayed waveguide grating with Fermi-like cross-section [J]. Acta Photonica Sinica, 2009, 38(3): 541-546.
[10] [10] LI De-lu, MA Chun-sheng, QIN Zheng-kun, et al. Parameter optimization of athermal arrayed waveguide grating using silica/polymer hybrid materials [J]. Acta Photonica Sinica, 2008, 37(3): 369-472.
[11] [11] XU Ying-chao, ZHANG Guo-wei, E Shun-lin, et al. A new design to reduce insertion loss and crosstalk of AWG [J]. Acta Photonica Sinica, 2007, 36(2): 224-228.
[12] [12] AMERSFOORT M R, SOOLE J B D, LEBLANC H P, et al. Passband broadening of integrated arrayed waveguide filters using multimode interference couplers [J]. Electronics Letters, 1996, 32(5): 449-451.
[13] [13] WANG Wen-min, XU Yuan-zhong, MA Wei-dong, et al. DWDM based on AWG with wide pass-band and low crosstalk [C]. SPIE, 2004, 5279: 611-617.
[14] [14] OU H, ROTTWITT K. Trenches for building blocks of advanced planar components [C]. Optical Amplifiers and Their Applications, San Francisco, California , USA, 2004, Paper JWB29.
[15] [15] FAN T Y T, ITO J, SUZUKI T, et al. Compact arrayed-waveguide grating using air trench and high mesa structure [C]. Integrated Photonics Research and Applications (IPRA), Uncasville, Connecticut, USA, 2006, Paper IMB3.
[16] [16] SMIT M K, DAM C V. PHASAR-based WDM-devices: principles, design and applications [J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(2): 236-250.
Get Citation
Copy Citation Text
WANG Wen-min, LIU Wen, MA Wei-dong. Novel Compact Low Refractive Index Contrast Silica-on-Silicon AWG[J]. Acta Photonica Sinica, 2011, 40(8): 1137
Received: Mar. 8, 2011
Accepted: --
Published Online: Aug. 29, 2011
The Author Email: