Journal of Inorganic Materials, Volume. 35, Issue 4, 461(2020)

Long-term in Vitro Corrosion Behavior of Zinc in Ringer’s Solution

Shuai TANG, Wentai ZHANG, Junyu QIAN, Peng XIAN, Xiaoshan MO, Nan HUANG, and Guojiang WAN*
Author Affiliations
  • Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
  • show less
    References(23)

    [1] BOWEN PATRICK K, DRELICH JAROSLAW, GOLDMAN JEREMY. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[D]. Advanced Materials, 25, 2577-2582(2013).

    [2] BOWEN PATRICK K, SHEARIER EMILY R, ZHAO SHAN et al. Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-Alloys[D]. Advanced Healthcare Materials, 5, 1121-1140(2016).

    [3] MOSTAED EHSAN, SIKORA-JASINSKA MALGORZATA, DRELICH JAROSLAW W et al. Zinc-based alloys for degradable vascular stent applications[D]. Acta Biomaterialia, 71, 1-23(2018).

    [4] BIN BUM-HO, BHIN JINHYUK, TAKAISHI MIKIRO et al. Requirement of zinc transporter ZIP10 for epidermal development: implication of the ZIP10-p63 axis in epithelial homeostasis[D]. Proceedings of the National Academy of Sciences, 114, 12243-12248(2017).

    [5] ZHU DONG-HUI, SU YING-CHAO, YOUNG MARCUS L et al. Biological responses and mechanisms of human bone marrow mesenchymal stem cells to Zn and Mg biomaterials[D]. ACS Applied materials & Interfaces, 9, 27453-27461(2017).

    [6] HAASE HAJO, RINK LOTHAR. Multiple impacts of zinc on immune function[D]. Metallomics, 6, 1175-1180(2014).

    [7] LIN SONG, WANG QI-LONG, YAN XIN-HAO et al. Mechanical properties, degradation behaviors and biocompatibility evaluation of a biodegradable Zn-Mg-Cu alloy for cardiovascular implants[D]. Materials Letters, 234, 294-297(2019).

    [8] KAFRI ALON, OVADIA SHIRA, GOLDMAN JEREMY et al. The suitability of Zn-1.3% Fe alloy as a biodegradable implant material[D]. Metals, 8, 153(2018).

    [9] SHI ZHANG-ZHI, YU JING, LIU XUE-FENG et al. Effects of Ag, Cu or Ca addition on microstructure and comprehensive properties of biodegradable Zn-0.8 Mn alloy[D]. Materials Science and Engineering: C, 99, 969-978(2019).

    [10] ZHENG YU-FENG, WU YUAN-HAO. Revolutionizing metallic biomaterials[D]. Acta Metallurgica Sinica, 53, 257-297(2017).

    [11] CHEN YING-QI, ZHANG WEN-TAI, MAITZ MANFRED F et al. Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline[D]. Corrosion Science, 111, 541-555(2016).

    [12] TÖRNE KARIN, LARSSON MARIANN, NORLIN ANNA et al. Degradation of zinc in saline solutions, plasma, and whole blood[D]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104, 1141-1151(2016).

    [13] ZHAO LI-CHEN, ZHANG ZHE, SONG YU-TING et al. Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications[D]. Materials & Design, 108, 136-144(2016).

    [14] LIU LI-JUN, MENG YAO, DONG CHAO-FANG et al. Initial formation of corrosion products on pure zinc in simulated body fluid[D]. Journal of Materials Science & Technology, 34, 2271-2282(2018).

    [15] LIU XIAO, YANG HONG-TAO, LIU YANG et al. Comparative studies on degradation behavior of pure zinc in various simulated body fluids[D]. JOM, 71, 1414-1425(2019).

    [16] STANDARD ASTM. G102-89, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements[D]. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA(2015).

    [17] STANDARD ASTM. G31-72. Standard practice for laboratory immersion corrosion testing of metals[D]. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA(2004).

    [18] SHI ZHI-MING, LIU MING, ATRENS ANDREJ. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation[D]. Corrosion Science, 52, 579-588(2010).

    [19] HUANG JUN. Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond[D]. Electrochimica Acta, 281, 170-188(2018).

    [20] WU J, ZHANG SD, SUN WH et al. Influence of oxidation related structural defects on localized corrosion in HVAF-sprayed Fe-based metallic coatings[D]. Surface and Coatings Technology, 335, 205-218(2018).

    [21] SHI ZHI-MING, CAO FU-YONG, SONG GUANG-LING et al. Low apparent valence of Mg during corrosion[D]. Corrosion Science, 88, 434-443(2014).

    [22] SIMõES AM, BASTOS AC, FERREIRA MG et al. Use of SVET and SECM to study the galvanic corrosion of an iron-zinc cell[D]. Corrosion Science, 49, 726-739(2007).

    [23] BLANDA GIUSEPPE, BRUCATO VALERIO, PAVIA FRANCESCO CARFì et al. Galvanic deposition and characterization of brushite/ hydroxyapatite coatings on 316L stainless steel[D]. Materials Science and Engineering: C, 64, 93-101(2016).

    Tools

    Get Citation

    Copy Citation Text

    Shuai TANG, Wentai ZHANG, Junyu QIAN, Peng XIAN, Xiaoshan MO, Nan HUANG, Guojiang WAN. Long-term in Vitro Corrosion Behavior of Zinc in Ringer’s Solution[J]. Journal of Inorganic Materials, 2020, 35(4): 461

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH PAPER

    Received: Apr. 25, 2019

    Accepted: --

    Published Online: Mar. 1, 2021

    The Author Email: Guojiang WAN (guojiang.wan@home.swjtu.edu.cn)

    DOI:10.15541/jim20190176

    Topics