Journal of Inorganic Materials, Volume. 35, Issue 1, 79(2020)

PtRu Particles Supported on Two-dimensional Titanium Carbide/Carbon Nanotubes: Preparation and Electrocatalytic Properties

Ya-Hui LI1, Jian-Feng ZHANG1、*, Hui-Yang CAO1, Xin ZHANG1, and Wan JIANG1,2
Author Affiliations
  • 1College of Mechanics and Materials, Hohai University, Nanjing 211100, China
  • 2College of Materials Science and Engineering, Donghua University, Shanghai 210050, China
  • show less
    References(38)

    [1] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[D]. Nature, 488, 294-303(2012).

    [2] WEN Z, LIU J, LI J. Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells[D]. Adv. Mater., 20, 743-747(2008).

    [3] LIU H, SONG C, LEI Z et al. A review of anode catalysis in the direct methanol fuel cell[D]. J. Power Sources, 155, 95-110(2006).

    [4] XIAO Z, MIN Y, LIANG M et al. Recent advances in catalysts for direct methanol fuel cells[D]. Energy Environ. Sci., 4, 2736-2753(2011).

    [5] LIU M, ZHANG R, CHEN W. Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications[D]. Chem. Rev., 114, 5117-5160(2014).

    [6] LU S, EID K, GE D et al. One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction[D]. Nanoscale, 9, 1033-1039(2017).

    [7] LI M, ZHENG H, HAN G et al. Facile synthesis of binary PtRu nanoflowers for advanced electrocatalysts toward methanol oxidation[D]. Catal. Commun., 92, 95-99(2017).

    [8] W L J, M S R, E S K et al. How to make electrocatalysts more active for direct methanol oxidation-avoid PtRu bimetallic alloys[D]. J. Phys. Chem. B, 104, 9772-9776(2000).

    [9] ZHANG J, CAO H, WANG H. Research progress of novel two- dimensional material MXene[D]. J. Inorg. Mater., 32, 561-570(2017).

    [10] ZHENG W, SUN Z, ZHANG P et al. Research progress on MXene, two dimensional nano-materials[D]. Mater. Rev. A, 31, 1-14(2017).

    [11] YU X, YOHAN D A, MICHAEL N et al. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries[D]. ACS Nano, 8, 9606-9615(2014).

    [12] WEI Z, LI Y, PEIGEN Z et al. Energy storage and application for 2D nano-material MXenes[D]. Mater. Rev. A, 32, 2513-2537(2018).

    [13] YAO S, LI N, YE H et al. Synthesis of two-dimensional MXene and their applications in electrochemical energy storage[D]. Progress in Chemistry, 30, 932-946(2018).

    [14] JIANG Y, XIE X, CHEN Y et al. Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties[D]. J. Mater. Chem. C, 6, 8679-8687(2018).

    [15] LIU Y, LUO R, LI Y et al. Sandwich-like Co3O4/MXene composite with enhanced catalytic performance for bisphenol a degradation[D]. Chem. Eng. J., 347, 731-740(2018).

    [16] ZHENG H, CHEN J, LI Y. Research on preparation and photocatalytic application of two-dimensional crystal MXene[D]. B. Chin. Ceram. Soc., 37, 1908-1913(2018).

    [17] MA Y, LIU N, LI L et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances[D]. Nat. Commun., 8, 1207-1215(2017).

    [18] HU Q K, SUN D D, WU Q H et al. MXene: a new family of promising hydrogen storage medium[D]. J. Phys. Chem. A, 117, 14253-14260(2013).

    [19] NAGUIB M, MOCHALIN V N, BARSOUM M W et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[D]. Adv. Mater., 26, 992-1005(2014).

    [20] XIE X, CHEN S, DING W et al. An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2(X=OH, F) nanosheets for oxygen reduction reaction[D]. Chem. Commun., 49, 10112-10114(2013).

    [21] WANG G, SUN G, QI W[D]. , et al. Effect of carbon black additive in Pt black cathode catalyst layer on direct methanol fuel cell performance. Int. J. Hydrogen Energy, 35, 11245-11253(2010).

    [22] YAO Z, YUE R, ZHAI C et al. Electrochemical layer-by-layer fabrication of a novel three-dimensional Pt/graphene/carbon fiber electrode and its improved catalytic performance for methanol electrooxidation in alkaline medium[D]. Int. J. Hydrogen Energy, 38, 6368-6376(2013).

    [23] KIM H T, YOU D J, YOON H K et al. Cathode catalyst layer using supported Pt catalyst on ordered mesoporous carbon for direct methanol fuel cell[D]. J. Power Sources, 180, 724-732(2014).

    [24] LI W, LIANG C, ZHOU W et al. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells[D]. J. Phys. Chem. B, 107, 149-154(2003).

    [25] ZHANG X, ZHU J X, TIWARY C S et al. Palladium nanoparticles supported on nitrogen and sulfur dual-doped graphene as highly active electrocatalysts for formic acid and methanol oxidation[D]. ACS Appl. Mater. Interfaces, 8, 10858-10865(2016).

    [26] CHEN W X, ZHAO J, LEE J Y et al. Microwave heated polyol synthesis of carbon nanotubes supported Pt nanoparticles for methanol electrooxidation[D]. Mater. Chem. Phys., 91, 124-129(2005).

    [27] WANG Z B, YIN G P, SHI P F. Effects of ozone treatment of carbon support on Pt-Ru/C catalysts performance for direct methanol fuel cell[D]. Carbon, 44, 133-140(2006).

    [28] ANTONUCCI P L, ALDERUCCI V, GIORDANO N et al. On the role of surface functional groups in Pt carbon interaction[D]. J. Appl. Electrochem., 24, 58-65(1994).

    [29] WILHELMSSON O, PALMQUIST J P, LEWIN E et al. Deposition and characterization of ternary thin films within the Ti-Al-C system by DC magnetron sputtering[D]. J. Cryst. Growth, 291, 290-300(2006).

    [30] QIU J D, WANG G C, LIANG R P et al. Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells[D]. J. Phys. Chem. C, 115, 15639-15645(2011).

    [31] ZHANG Y, CHANG G, SHU H et al. Synthesis of Pt-Pd bimetallic nanoparticles anchored on graphene for highly active methanol electro-oxidation[D]. J. Power Sources, 262, 279-285(2014).

    [32] YANG X, YANG Q, XU J et al. Bimetallic PtPd nanoparticles on Nafion-graphene film as catalyst for ethanol electro-oxidation[D]. J. Mater. Chem., 22, 8057-8062(2012).

    [33] HUANG H, ZHU J, ZHANG W et al. Controllable codoping of nitrogen and sulfur in graphene for highly efficient Li-oxygen batteries and direct methanol fuel cells[D]. Chem. Mater., 28, 1737-1745(2016).

    [34] ZHANG X, ZHANG J, HUANG H et al. Platinum nanoparticles anchored on graphene oxide-dispersed pristine carbon nanotube supports: high-performance electrocatalysts toward methanol electrooxidation[D]. Electrochim. Acta, 258, 919-926(2017).

    [35] SU F, TIAN Z, POH C K et al. Pt nanoparticles supported on nitrogen- doped porous carbon nanospheres as an electrocatalyst for fuel cells[D]. Chem. Mater., 22, 832-839(2010).

    [36] ZHANG B, PAN Z C, YU K et al. Titanium vanadium nitride supported Pt nanoparticles as high-performance catalysts for methanol oxidation reaction[D]. J. Solid State Electrochem., 21, 3065-3070(2017).

    [37] HUANG H, ZHU J, LI D et al. Pt nanoparticles grown on 3D RuO2-modified graphene architectures for highly efficient methanol oxidation[D]. J. Mater. Chem. A, 5, 4560-4567(2017).

    [38] GAO Z, LI M, WANG J et al. Pt nanocrystals grown on three-dimensional architectures made from graphene and MoS2 nanosheets: highly efficient multifunctional electrocatalysts toward hydrogen evolution and methanol oxidation reactions[D]. Carbon, 139, 369-377(2018).

    Tools

    Get Citation

    Copy Citation Text

    Ya-Hui LI, Jian-Feng ZHANG, Hui-Yang CAO, Xin ZHANG, Wan JIANG. PtRu Particles Supported on Two-dimensional Titanium Carbide/Carbon Nanotubes: Preparation and Electrocatalytic Properties[J]. Journal of Inorganic Materials, 2020, 35(1): 79

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH PAPER

    Received: Mar. 12, 2019

    Accepted: --

    Published Online: Feb. 24, 2021

    The Author Email: Jian-Feng ZHANG (jfzhang_sic@163.com)

    DOI:10.15541/jim20190107

    Topics