Infrared and Laser Engineering, Volume. 52, Issue 1, 20220344(2023)

Salient object detection method based on multi-scale feature-fusion guided by edge information

Xiangjun Wang1,2, Mingyang Li1,2, Lin Wang1,2, Feng Liu1,2, and Wei Wang1,2
Author Affiliations
  • 1State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
  • 2MOEMS Education Ministry Key Laboratory, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(13)
    Structural diagram of channel fusion residual block (RCFBlock)
    Structural diagram of MCFUBlock
    Structural diagram of expanded spatial attention module guided by edge information (EGSAM)
    Structure diagram of complete EGMFNet
    Structure diagram of U-block with residual connection
    EGMFNet prediction annotation rendering
    EGMFNet prediction annotation rendering
    • Table 1. Comparison of the experimental results

      View table
      View in Article

      Table 1. Comparison of the experimental results

      ECSSDPASCAL-SHKU-ISDUTS-TE
      ${{F} }_{{\beta } }$$ {M}{A}{E} $${{S} }_{{\alpha } }$${{F} }_{{\beta } }$$ {M}{A}{E} $${{S} }_{{\alpha } }$${{F} }_{{\beta } }$$ {M}{A}{E} $${{S} }_{{\alpha } }$${{F} }_{{\beta } }$$ {M}{A}{E} $${{S} }_{{\alpha } }$
      MDF0.8320.1050.7760.7680.1460.6920.8610.1290.8100.7300.0940.792
      PiCaNet0.8860.0450.9170.8560.0780.8480.8700.0430.9040.7590.0510.869
      AFNet0.9080.0420.9130.8210.0700.8440.8880.0360.9050.7920.0460.867
      ${ {{\rm{R}}} }^{3}{{\rm{N}}}{{\rm{e}}}{{\rm{t}}}$0.9140.0400.9100.8450.0940.8000.8930.0360.8950.7850.0570.834
      PoolNet0.9150.0390.9210.8220.0740.8450.8920.0340.9110.8090.0400.883
      BPFINet0.9280.0340.9260.8450.0650.8570.9110.0280.9180.8380.0380.882
      Proposed0.9430.0330.9260.8680.0690.8560.9280.0330.9120.8520.0370.883
    • Table 2. Parameter quantity and real-time evaluation of EGFMNet

      View table
      View in Article

      Table 2. Parameter quantity and real-time evaluation of EGFMNet

      ${\rm{ Parameters}}$${\rm{Runtime}/s }$${\rm{Frame\;rate}/FPS }$
      R3Net 56 156 1260.03033
      PoolNet71 383 5770.03330
      BPFINet68 326 8530.03330
      Proposed60 638 9280.03132
    • Table 3. Ablation experimental results. GA is the basic network trained with BCE Loss, GB is the basic network trained with mixed loss, GC is the complete network with three-stage EGSAM module and trained with BCE Loss, and GD is the complete network with three-stage EGSAM module and trained with mixed loss

      View table
      View in Article

      Table 3. Ablation experimental results. GA is the basic network trained with BCE Loss, GB is the basic network trained with mixed loss, GC is the complete network with three-stage EGSAM module and trained with BCE Loss, and GD is the complete network with three-stage EGSAM module and trained with mixed loss

      GroupsStructureLossFβMAESα
      GABaselineBCE0.9230.0410.908
      GBBaselineBCE+BL0.9260.0400.911
      GCBaseline+EGSAM(3 stages)BCE0.9360.0360.919
      GDBaseline+EGSAM(3 stages)BCE+BL0.9430.0330.926
    • Table 4. RCFBlock stack quantity verification experiment

      View table
      View in Article

      Table 4. RCFBlock stack quantity verification experiment

      No.FβMAESαParameters
      10.8890.0890.83164 609 584
      20.9430.0330.92660 638 928
      30.9250.0400.91148 277 712
    • Table 5. Verify the experimental results at EGSAM module level

      View table
      View in Article

      Table 5. Verify the experimental results at EGSAM module level

      No.Stage with EGSAMFβMAESαParametersSize/MB
      1Baseline0.9230.0410.90854 437 157207.67
      2Stage 10.9360.0380.91654 734 330208.79
      3Stage 1+20.9410.0350.92355 916 197213.30
      4Stage 1+2+30.9430.0330.92660 638 928231.32
      5Stage 1+2+3+40.9420.0330.92479 521 275303.35
    • Table 6. EGSAM fusion coefficient setting experiment

      View table
      View in Article

      Table 6. EGSAM fusion coefficient setting experiment

      No.αFβMAESα
      1Baseline0.9230.0410.908
      210.8420.1040.832
      30.10.9110.0520.894
      40.050.9260.0410.913
      50.010.9430.0330.926
      60.0050.9400.0370.920
    Tools

    Get Citation

    Copy Citation Text

    Xiangjun Wang, Mingyang Li, Lin Wang, Feng Liu, Wei Wang. Salient object detection method based on multi-scale feature-fusion guided by edge information[J]. Infrared and Laser Engineering, 2023, 52(1): 20220344

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image processing

    Received: May. 20, 2022

    Accepted: --

    Published Online: Feb. 9, 2023

    The Author Email:

    DOI:10.3788/IRLA20220344

    Topics