Journal of Innovative Optical Health Sciences, Volume. 16, Issue 1, 2245002(2023)

GCR-Net: 3D Graph convolution-based residual network for robust reconstruction in cerenkov luminescence tomography

Weitong Li1...1,2, Mengfei Du1,1,2, Yi Chen1,1,2, Haolin Wang1,1,2, Linzhi Su1,1,2,*, Huangjian Yi1,1, Fengjun Zhao1,1, Kang Li1,1,2, Lin Wang, and Xin Cao1,12,** |Show fewer author(s)
Author Affiliations
  • 1School of Information Science and Technology, Northwest University, Xi’an, Shaanxi 710127, P. R. China
  • 1Xi’an University of Technology, Xi’an, Shaanxi 710127, P. R. China
  • 2National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi’an, Shaanxi 710127, P. R. China
  • show less
    References(47)

    [1] R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, M. D. Silva. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys. Med. Biol., 54, N355-N365(2009).

    [2] C. Qin, J. Zhong, Z. Hu, X. Yang, J. Tian. Recent advances in Cerenkov luminescence and tomography imaging. IEEE J. Sel. Top. Quantum Electron., 18, 1084-1093(2012).

    [3] J. C. Park, G. Il An, S. I. Park, J. Oh, H. J. Kim, Y. Su Ha, E. K. Wang, K. Min Kim, J. Y. Kim, J. Lee, M. J. Welch, J. Yoo. Luminescence imaging using radionuclides: A potential application in molecular imaging. Nucl. Med. Biol., 38, 321-329(2011).

    [4] A. E. Spinelli, F. Boschi. Novel biomedical applications of Cerenkov radiation and radioluminescence imaging. Phys. Med., 31, 120-129(2015).

    [5] T. Song, X. Liu, Y. Qu, H. Liu, C. Bao, C. Leng, Z. Hu, K. Wang, J. Tian. A novel endoscopic Cerenkov luminescence imaging system for intraoperative surgical navigation. Mol. Imag., 14, 443-449(2015).

    [6] J. Axelsson, J. Krohn. Cerenkov luminescence imaging for accurate placement of radioactive plaques in episcleral brachytherapy of intraocular tumors. Invest. Ophthalmol. Vis. Sci., 56, 7362-7368(2015).

    [7] Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, J. Tian. In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging. Nat. Commun., 6, 7560(2015).

    [8] Z. Zhang, M. Cai, C. Bao, Z. Hu, J. Tian. Endoscopic Cerenkov luminescence imaging and image-guided tumor resection on hepatocellular carcinoma-bearing mouse models. Nanomedicine, 17, 62-70(2019).

    [9] Y. Xu, E. Chang, H. Liu, H. Jiang, S. S. Gambhir, Z. Cheng. Proof-of-concept study of monitoring cancer drug therapy with cerenkov luminescence imaging. J. Nucl. Med., 53, 312-317(2012).

    [10] D. L. Thorek, A. Ogirala, B. J. Beattie, J. Grimm. Quantitative imaging of disease signatures through radioactive decay signal conversion. Nat. Med., 19, 1345-1350(2013).

    [11] X. Cao, Y. Zhan, X. Cao, J. Liang, X. Chen. Harnessing the power of Cerenkov luminescence imaging for gastroenterology: Cerenkov luminescence endoscopy. Curr. Med. Imag. Rev., 13, 50-57(2017).

    [12] X. Cao, X. Chen, F. Kang, Y. Lin, M. Liu, H. Hu, Y. Nie, K. Wu, J. Wang, J. Liang, J. Tian. Performance evaluation of endoscopic Cerenkov luminescence imaging system: In vitro and pseudotumor studies. Biomed. Opt. Exp., 5, 3660-3670(2014).

    [13] D. Fan, X. Zhang, L. Zhong, X. Liu, Y. Sun, H. Zhao, B. Jia, Z. Liu, Z. Zhu, J. Shi, F. Wang. (68)Ga-labeled 3PRGD2 for dual PET and Cerenkov luminescence imaging of orthotopic human glioblastoma. Bioconjug. Chem., 26, 1054-1060(2015).

    [14] X. Cao, X. Chen, F. Kang, X. Cao, Y. Zhan, J. Wang, K. Wu, J. Liang. Sensitivity improvement of Cerenkov luminescence endoscope with terbium doped Gd2O2S nanoparticles. Appl. Phys. Lett., 106, 4(2015).

    [15] H. Chen, K. Shou, S. Chen, C. Qu, Z. Wang, L. Jiang, M. Zhu, B. Ding, K. Qian, A. Ji. Smart self-assembly amphiphilic cyclopeptide-dye for near-infrared window-II imaging. Adv. Mater., 33, 2006902(2021).

    [16] C. Li, G. S. Mitchell, S. R. Cherry. Cerenkov luminescence tomography for small-animal imaging. Opt. Lett., 35, 1109-1111(2010).

    [17] Q. Zhang, H. Zhao, D. Chen, X. Qu, X. Chen, X. He, W. Li, Z. Hu, J. Liu, J. Liang, J. Tian. Source sparsity based primal-dual interior-point method for three-dimensional bioluminescence tomography. Opt. Commun., 284, 5871-5876(2011).

    [18] H. Guo, Z. Hu, X. He, X. Zhang, M. Liu, Z. Zhang, X. Shi, S. Zheng, J. Tian. Non-convex sparse regularization approach framework for high multiple-source resolution in cerenkov luminescence tomography. Opt. Exp., 25, 28068-28085(2017).

    [19] H. Guo, J. Yu, Z. Hu, H. Yi, Y. Hou, X. He. A hybrid clustering algorithm for multiple-source resolving in bioluminescence tomography. J. Biophoton., 11, e201700056(2018).

    [20] W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, A. Cong. Practical reconstruction method for bioluminescence tomography. Opt. Exp., 13, 6756-6771(2005).

    [21] M. A. Naser, M. S. Patterson. Bioluminescence tomography using eigenvectors expansion and iterative solution for the optimized permissible source region. Biomed. Opt. Exp., 2, 3179-3193(2011).

    [22] M. A. Naser, M. S. Patterson. Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography, normalized data, and optimized selection of the permissible source region. Biomed. Opt. Exp., 2, 169-184(2010).

    [23] J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, J. Tian. In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models. Opt Exp., 18, 13102-13113(2010).

    [24] C. Qin, S. Zhu, J. Feng, J. Zhong, X. Ma, P. Wu, J. Tian. Comparison of permissible source region and multispectral data using efficient bioluminescence tomography method. J. Biophoton., 4, 824-839(2011).

    [25] J. Feng, K. Jia, G. Yan, S. Zhu, C. Qin, Y. Lv, J. Tian. An optimal permissible source region strategy for multispectral bioluminescence tomography. Opt. Exp., 16, 15640-15654(2008).

    [26] Z. Hu, X. Chen, J. Liang, X. Qu, D. Chen, W. Yang, J. Wang, F. Cao, J. Tian. Single photon emission computed tomography-guided Cerenkov luminescence tomography. J. Appl. Phys., 112, 024703(2012).

    [27] K. Liu, Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, D. Han. Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models. Opt. Exp., 18, 20988-21002(2010).

    [28] J. Dutta, S. Ahn, C. Li, S. R. Cherry, R. M. Leahy. Joint L1 and total variation regularization for fluorescence molecular tomography. Phys. Med. Biol., 57, 1459(2012).

    [29] K. Liu, J. Tian, C. Qin, X. Yang, D. Han, P. Wu, S. Zhu. Tomographic bioluminescence imaging reconstruction via a dynamically sparse regularized global method in mouse models. J. Biomed. Opt., 16, 046016(2011).

    [30] M. Cai, Z. Zhang, X. Shi, J. Yang, Z. Hu, J. Tian. Non-negative iterative convex refinement approach for accurate and robust reconstruction in Cerenkov luminescence tomography. IEEE Trans. Med. Imag, 39, 3207(2020).

    [31] J. Zhong, J. Tian, X. Yang, C. Qin. Whole-body Cerenkov luminescence tomography with the finite element SP(3) method. Ann Biomed. Eng., 39, 1728-1735(2011).

    [32] Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, J. Tian. Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach. PLoS One, 7, e37623(2012).

    [33] H. Liu, X. Yang, T. Song, C. Bao, L. Shi, Z. Hu, K. Wang, J. Tian. Multispectral hybrid Cerenkov luminescence tomography based on the finite element SPn method. J. Biomed. Opt., 20, 86007(2015).

    [34] A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, F. Boschi. Multispectral Cerenkov luminescence tomography for small animal optical imaging. Opt. Exp., 19, 12605-12618(2011).

    [35] Z. Zhang, M. Cai, Y. Gao, X. Shi, X. Zhang, Z. Hu, J. Tian. A novel Cerenkov luminescence tomography approach using multilayer fully connected neural network. Phys. Med. Biol., 64, 245010(2019).

    [36] X. Cao, X. Wei, F. Yan, L. Wang, L. Su, Y. Hou, G. Geng, X. He. A novel stacked denoising autoencoder-based reconstruction framework for Cerenkov luminescence tomography. IEEE Access, 7, 85178-85189(2019).

    [37] X. Zhang, M. Cai, L. Guo, Z. Zhang, B. Shen, X. Zhang, Z. Hu, J. Tian. Attention mechanism-based locally connected network for accurate and stable reconstruction in Cerenkov luminescence tomography. Biomed. Opt. Exp., 12, 7703-7716(2021).

    [38] H. Meng, Y. Gao, X. Yang, K. Wang, J. Tian. K-nearest neighbor based locally connected network for fast morphological reconstruction in fluorescence molecular tomography. IEEE Trans. Med. Imaging, 39, 3019-3028(2020).

    [39] J. Yu, C. Dai, X. He, H. Guo, S. Sun, Y. Liu. Bioluminescence tomography based on one-dimensional convolutional neural networks. Fron. Oncol., 11, 760689(2021).

    [40] A. D. Klose. The forward and inverse problem in tissue optics based on the radiative transfer equation: A brief review. J. Quant. Spectrosc. Radiat. Transf., 111, 1852-1853(2010).

    [41] W. Cai, M. Xu, R. Alfano. Three-dimensional radiative transfer tomography for turbid media. IEEE J. Sel. Top. Quantum Electron., 9, 189-198(2003).

    [42] C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, J. Tian. Recent advances in bioluminescence tomography: Methodology and system as well as application. Laser Photon. Rev., 8, 94-114(2014).

    [43] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, J. M. Solomon. Dynamic graph cnn for learning on point clouds. ACM Trans. Graph., 38, 1-12(2019).

    [44] X. Cao, J. Zhang, J. Yang, C. Fan, F. Zhao, W. Zhou, L. Wang, G. Geng, M. Zhou, X. Chen. A deep unsupervised clustering-based post-processing framework for high-fidelity Cerenkov luminescence tomography. J. Appl. Phys., 128, 193104(2020).

    [45] B. Parvitte, C. Risser, R. Vallon, V. Zéninari. Quantitative simulation of photoacoustic signals using finite element modelling software. Appl. Phys. B, 111, 383-389(2013).

    [46] S. Ren, X. Chen, H. Wang, X. Qu, G. Wang, J. Liang, J. Tian. Molecular optical simulation environment (MOSE): A platform for the simulation of light propagation in turbid media. PLoS One, 8, e61304(2013).

    [47] H. Yi, D. Chen, W. Li, S. Zhu, X. Wang, J. Liang, J. Tian. Reconstruction algorithms based on l1-norm and l2-norm for two imaging models of fluorescence molecular tomography: A comparative study. J. Biomed. Opt., 18, 56013(2013).

    Tools

    Get Citation

    Copy Citation Text

    Weitong Li, Mengfei Du, Yi Chen, Haolin Wang, Linzhi Su, Huangjian Yi, Fengjun Zhao, Kang Li, Lin Wang, Xin Cao. GCR-Net: 3D Graph convolution-based residual network for robust reconstruction in cerenkov luminescence tomography[J]. Journal of Innovative Optical Health Sciences, 2023, 16(1): 2245002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 28, 2022

    Accepted: Sep. 7, 2022

    Published Online: Feb. 21, 2023

    The Author Email: Su Linzhi (sulinzhi029@163.com), Cao Xin (xin_cao@163.com)

    DOI:10.1142/S179354582245002X

    Topics