Journal of Geo-information Science, Volume. 22, Issue 1, 136(2020)

Mobile Phone User Stay Behavior Prediction Method Considering Mobile APP Usage Characterization

Zhixiang FANG1...1,*, Yaqian NI2,2, and Shouqian HUANG11 |Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
  • 1武汉大学测绘遥感信息工程国家重点实验室,武汉 430079
  • 2Autonavi Holdings Limited, Beijing 102200, China
  • 2高德软件有限公司,北京 102200
  • show less
    Figures & Tables(11)
    Basic procedures of the individual stay behavior prediction method
    The example of individual stay behavior
    Number of location update records for mobile users from Aug.10, 2015 to Aug.29, 2015
    The prediction accuracy distribution of mobile phone user stay behavior
    Comparison of mobile phone user stay behavior prediction results with different feature sets
    The chi-square value of the top20 stay behavior prediction features
    • Table 1. The examples of one user′s mobile phone location update data records

      View table
      View in Article

      Table 1. The examples of one user′s mobile phone location update data records

      用户ID日期时间事件类型基站编号基站经度/°基站纬度/°
      58****20YY-MM-DD07:30111**115.****29.****
      58****20YY-MM-DD08:30511**115.****29.****
      3
      58****20YY-MM-DD21:30410**115.****29.****
      58****20YY-MM-DD22:301011**115.****29.****
    • Table 2. The examples of one user′s Internet traffic data records

      View table
      View in Article

      Table 2. The examples of one user′s Internet traffic data records

      用户ID归属地日期时间基站编号经度/°纬度/°APP流量/G
      58***HB.WH20YY-MM-DD07:3211**115.***29.***高德地图0.0016
      58***\N20YY-MM-DD08:3211**115.***29.***微信0.0092
      58***\N20YY-MM-DD09:2712**115.***29.***QQ0.0242
      58***\N20YY-MM-DD21:0610**115.***29.***微信0.0016
      58***\N20YY-MM-DD21:3411**115.***29.**新浪新闻0.0554
    • Table 3. The statistics of mobile phone user stay behavior from Aug.10, 2015 to Aug.29, 2015

      View table
      View in Article

      Table 3. The statistics of mobile phone user stay behavior from Aug.10, 2015 to Aug.29, 2015

      时段移动/%停留/%无法识别/%
      614.5152.4133.08
      724.9349.9925.07
      831.6649.8718.46
      933.0049.5717.43
      1032.6049.7717.63
      1131.7949.8118.40
      1230.7550.1619.09
      1327.1651.3621.48
      1428.4151.0620.54
      1528.2350.9620.81
      1628.3350.3021.37
      1729.5949.1021.31
      1830.9747.3021.73
      1929.3750.1620.47
      2027.3351.4621.20
      2122.6852.6024.72
    • Table 4. The recognition rate of mobile phone users' home and work location from Aug.10, 2015 to Aug.29, 2015

      View table
      View in Article

      Table 4. The recognition rate of mobile phone users' home and work location from Aug.10, 2015 to Aug.29, 2015

      地点识别率/%
      78.53
      工作地47.06
      同时识别率40.09
    • Table 5. Comparison of mobile phone user stay behavior prediction effects between different prediction algorithms

      View table
      View in Article

      Table 5. Comparison of mobile phone user stay behavior prediction effects between different prediction algorithms

      预测模型准确率/%运行时间/s参数设置
      本文模型80.310.141
      SVM77.353.996kernel='linear' probability=True
      GBDT76.131.940n_estimators=200
      RF81.540.960n_estimators=200
      一阶Markov71.75-
      MostValue69.45-
    Tools

    Get Citation

    Copy Citation Text

    Zhixiang FANG, Yaqian NI, Shouqian HUANG. Mobile Phone User Stay Behavior Prediction Method Considering Mobile APP Usage Characterization[J]. Journal of Geo-information Science, 2020, 22(1): 136

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Nov. 4, 2019

    Accepted: --

    Published Online: Sep. 16, 2020

    The Author Email: FANG Zhixiang (zxfang@whu.edu.cn)

    DOI:10.12082/dqxxkx.2020.190655

    Topics