Journal of the Chinese Ceramic Society, Volume. 53, Issue 2, 241(2025)
Microstructural Evolution and Elemental Distribution of (TiZrNbTaMe)C (Me=V, Cr, Mo, W) High-Entropy Ceramics
[1] [1] GUAN S X, LIN W T, LIANG H, et al. The effect of pressure tuning on the structure and mechanical properties of high-entropy carbides[J]. Scr Mater, 2022, 216: 114755.
[2] [2] FAHRENHOLTZ W G, HILMAS G E. Ultra-high temperature ceramics: Materials for extreme environments[J]. Scr Mater, 2017, 129: 94–99.
[3] [3] REZAEI F, KAKROUDI M G, SHAHEDIFAR V, et al. Densification, microstructure and mechanical properties of hot pressed tantalum carbide[J]. Ceram Int, 2017, 43(4): 3489–3494.
[4] [4] AIHARA J, MAEKAWA M, UETA S, et al. Microstructures and positron annihilation spectroscopy of nearly stoichiometric ZrC coating layers for advanced high-temperature gas-cooled reactor fuel[J]. J Am Ceram Soc, 2011, 94(12): 4516–4522.
[5] [5] SUN S K, ZHANG G J, LIU J X, et al. Reaction sintering of HfC/W cermets with high strength and toughness[J]. J Am Ceram Soc, 2013, 96(3): 867–872.
[6] [6] XIANG H, XING Y, DAI F, et al. High-entropy ceramics: Present status, challenges, and a look forward[J]. J Adv Ceram, 2021, 10: 385–441.
[7] [7] CHENG L X, XIE Z P, LIU G W. Spark plasma sintering of TiC ceramic with tungsten carbide as a sintering additive[J]. J Eur Ceram Soc, 2013, 33(15/16): 2971–2977.
[8] [8] ZINKLE S J, WAS G S. Materials challenges in nuclear energy[J]. Acta Mater, 2013, 61(3): 735–758.
[9] [9] SHEN Y B, WANG X G, ZHANG G J, et al. Strong ZrC ceramics at high temperatures with the addition of W[J]. J Am Ceram Soc, 2019, 102(6): 3090–3096.
[10] [10] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv Eng Mater, 2004, 6(5): 299–303.
[11] [11] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater, 2017, 122: 448–511.
[12] [12] CASTLE E, CSANDI T, GRASSO S, et al. Processing and properties of high-entropy ultra-high temperature carbides[J]. Sci Rep, 2018, 8(1): 8609.
[13] [13] SARKER P, HARRINGTON T, TOHER C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors[J]. Nat Commun, 2018, 9: 4980.
[14] [14] HAN X X, GIRMAN V, SEDLAK R, et al. Improved creep resistance of high entropy transition metal carbides[J]. J Eur Ceram Soc, 2020, 40(7): 2709–2715.
[15] [15] YE B L, WEN T Q, LIU D, et al. Oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics at 1073-1473 K in air[J]. Corros Sci, 2019, 153: 327–332.
[16] [16] TAN Y Q, CHEN C, LI S G, et al. Oxidation behaviours of high-entropy transition metal carbides in 1200 ℃ water vapor[J]. J Alloys Compd, 2020, 816: 152523.
[17] [17] HARRINGTON T J, GILD J, SARKER P, et al. Phase stability and mechanical properties of novel high entropy transition metal carbides[J]. Acta Mater, 2019, 166: 271–280.
[18] [18] LIU Y W, ZHU Z J, TANG Z Y, et al. Unraveling lattice-distortion hardening mechanisms in high-entropy carbides[J]. Small, 2024, 20(38): e2403159.
[19] [19] WANG F, YAN X L, WANG T Y, et al. Irradiation damage in (Zr0.25Ta0.25Nb0.25Ti0.25)C high-entropy carbide ceramics[J]. Acta Mater, 2020, 195: 739–749.
[20] [20] WEN Z H, TANG Z Y, MENG H, et al. Ultrafast synthesis of high-entropy carbides up to 3273 K for superior oxidation resistance[J]. Cell Rep Phys Sci, 2024, 5(2): 101821.
[21] [21] CHENG Z L, LU W Y, CHEN L, et al. Compressive creep properties and mechanisms of (Ti-Zr-Nb-Ta-Mo)C high entropy ceramics at high temperatures[J]. J Eur Ceram Soc, 2022, 42(13): 5280–5289.
[22] [22] EVANS A G, CHARLES E A. Fracture toughness determinations by indentation[J]. J Am Ceram Soc, 1976, 59(7–8): 371–372.
[23] [23] DAI F Z, SUN Y J, REN Y X, et al. Segregation of solute atoms in ZrC grain boundaries and their effects on grain boundary strengths[J]. J Mater Sci Technol, 2022, 101: 234–241.
[24] [24] SU W T, CHEN L, ZHANG W, et al. Insights into grain boundary segregation and solubility limit of Cr in (TiZrNbTaCr)C[J]. J Mater Sci Technol, 2023, 139: 1–9.
[25] [25] ETTMAYER P, KOLASKA H, LENGAUER W, et al. Ti(C, N) cermets—Metallurgy and properties[J]. Int J Refract Met Hard Mater, 1995, 13(6): 343–351.
[27] [27] TIAN Y J, XU B, ZHAO Z S. Microscopic theory of hardness and design of novel superhard crystals[J]. Int J Refract Met Hard Mater, 2012, 33: 93–106.
[28] [28] SU W T, CHEN L, HUO S J, et al. Fracture mode transition from intergranular to transgranular in (TiZrNbTaCr)C: The grain boundary purification effect of Cr carbide[J]. J Eur Ceram Soc, 2024, 44(4): 1881–1889.
[29] [29] SU W T, CHEN L, HUO S J, et al. Water vapor oxidation behavior and mechanism of high-entropy (TiZrNbTaCr)C at 1200 ℃[J]. Corros Sci, 2024, 231: 111951.
[30] [30] WANG P C, LIU W H, XU Z Q, et al. Unraveling the oxidation behavior and mechanism of (TiZrTaNbCr)C high-entropy ceramic by introducing Cr3C2[J]. J Eur Ceram Soc, 2024, 44(5): 2687–2694.
[31] [31] CHEN L, WANG Y J, LI Y P, et al. Microstructural evolution, mechanical and thermal properties of TiC-ZrC-Cr3C2 composites[J]. Int J Refract Met Hard Mater, 2019, 80: 188–194.
Get Citation
Copy Citation Text
KONG Qingyi, WANG Kai, CHEN Lei, SU Wentao, HUO Sijia, WANG Yujin. Microstructural Evolution and Elemental Distribution of (TiZrNbTaMe)C (Me=V, Cr, Mo, W) High-Entropy Ceramics[J]. Journal of the Chinese Ceramic Society, 2025, 53(2): 241
Category:
Received: Sep. 2, 2024
Accepted: Feb. 20, 2025
Published Online: Feb. 20, 2025
The Author Email: Yujin WANG (wangyuj@hit.edu.cn)