Journal of the Chinese Ceramic Society, Volume. 52, Issue 8, 2623(2024)
Research Progress on Stability of Cesium Lead Halide Perovskite Quantum Dots Glass
[1] [1] LI X M, WU Y, ZHANG S L, et al. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Adv Funct Mater, 2016, 26(15): 2435–2445.
[2] [2] SUN C, ZHANG Y, RUAN C, et al. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots[J]. Adv Mater,2016, 28(45): 10088–10094.
[3] [3] EPERON G E, HABISREUTINGER S N, LEIJTENS T, et al. The importance of moisture in hybrid lead halide perovskite thin film fabrication[J]. ACS Nano, 2015, 9(9): 9380–9393.
[4] [4] WANG H C, BAO Z, TSAI H Y, et al. Perovskite quantum dots and their application in light-emitting diodes[J]. Small, 2018, 14(1):1702433.
[5] [5] HUANG S Q, LI Z C, WANG B, et al. Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination[J]. ACS Appl Mater Interfaces, 2017, 9(8): 7249–7258.
[6] [6] YANG D D, LI X M, ZENG H B. Surface chemistry of all inorganic halide perovskite nanocrystals: Passivation mechanism and stability[J].Adv Mater Int, 2018, 5(8): 1701662.
[7] [7] HUANG H, CHEN B K, WANG Z G, et al. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices[J]. Chem Sci, 2016, 7(9): 5699–5703.
[8] [8] LUO B B, PU Y C, LINDLEY S A, et al. Organolead halide perovskite nanocrystals: Branched capping ligands control crystal size and stability[J]. Angew Chem Int Ed Engl, 2016, 55(31): 8864–8868.
[9] [9] YAO J S, GE J, HAN B N, et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes[J]. J Am Chem Soc, 2018, 140(10): 3626–3634.
[10] [10] ZHANG H H, WANG X, LIAO Q, et al. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging[J]. Adv Funct Mater, 2017, 27(7): 1604382.
[11] [11] HUANG S Q, LI Z C, KONG L, et al. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene[J]. J Am Chem Soc, 2016, 138(18): 5749–5752.
[12] [12] DIRIN D N, PROTESESCU L, TRUMMER D, et al. Harnessing defect-tolerance at the nanoscale: Highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes[J]. Nano Lett,2016, 16(9): 5866–5874.
[13] [13] PALAZON F, AKKERMAN Q A, PRATO M, et al. X-ray lithography on perovskite nanocrystals films: From patterning with anion-exchange reactions to enhanced stability in air and water[J]. ACS Nano, 2016,10(1): 1224–1230.
[14] [14] RAVI V K, SAIKIA S, YADAV S, et al. CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability[J].ACS Energy Lett, 2020, 5(6): 1794–1796.
[15] [15] WANG H C, LIN S Y, TANG A C, et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display[J]. Angew Chem Int Ed Engl, 2016, 55(28):7924–7929.
[16] [16] ZHANG F, SHI Z F, LI S, et al. Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting[J]. ACS Appl Mater Interfaces,2019, 11(31): 28013–28022.
[17] [17] MA Z Z, SHI Z F, WANG L T, et al. Water-induced fluorescence enhancement of lead-free cesium bismuth halide quantum dots by 130% for stable white light-emitting devices[J]. Nanoscale, 2020, 12(6):3637–3645.
[18] [18] ZHANG F, SHI Z F, MA Z Z, et al. Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices[J]. Nanoscale, 2018,10(43): 20131–20139.
[19] [19] LI X M, WANG Y, SUN H D, et al. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing[J].Adv Mater, 2017, 29(36): 1701185.
[20] [20] VELDHUIS S A, NG Y F, AHMAD R, et al. Crown ethers enable room-temperature synthesis of CsPbBr3 quantum dots for light-emitting diodes[J]. ACS Energy Lett, 2018, 3(3): 526–531.
[21] [21] KRIEG F, OCHSENBEIN S T, YAKUNIN S, et al. Colloidal CsPbX3(X = Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability[J]. ACS Energy Lett, 2018, 3(3):641–646.
[22] [22] GUARNERA S, ABATE A, ZHANG W, et al. Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer[J]. J Phys Chem Lett, 2015, 6(3): 432–437.
[23] [23] XU K Y, LIN C C, XIE X B, et al. Efficient and stable luminescence from Mn2+ in core and core-isocrystalline shell CsPbCl3 perovskite nanocrystals[J]. Chem Mater, 2017, 29(10): 4265–4272.
[24] [24] QIAO B, SONG P J, CAO J Y, et al. Water-resistant, monodispersed and stably luminescent CsPbBr3/CsPb2Br5 core-shell-like structure lead halide perovskite nanocrystals[J]. Nanotechnology, 2017, 28(44):445602.
[25] [25] LI Z J, HOFMAN E, LI J, et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals[J]. Adv Funct Mater, 2018, 28(1): 1704288.
[26] [26] AKKERMAN Q A, MEGGIOLARO D, DANG Z Y, et al. Fluorescent alloy CsPbxMn1–xI3 perovskite nanocrystals with high structural and optical stability[J]. ACS Energy Lett, 2017, 2(9): 2183–2186.
[27] [27] ZHENG F, YANG B B, CAO P Y, et al. A novel bulk phosphor for white LDs: CsPbBr3/Cs4PbBr6 composite quantum dots-embedded borosilicate glass with high PLQY and excellent stability[J]. J Alloys Compd, 2020, 818: 153307.
[28] [28] YANG Q H, ZHAO L, YU H, et al. UV-shielding device of high-stability glass embedded with in situ growth of ZnO quantum dots[J]. J Alloys Compd, 2019, 784: 535–540.
[29] [29] DANTAS N O, DE LIMA FERNANDES G, BAFFA O, et al.Cd1–xMnxTe ultrasmall quantum dots growth in a silicate glass matrix by the fusion method[J]. Appl Phys Lett, 2014, 105(13): 132410.
[30] [30] FAN S H, WU G B, ZHANG H, et al. Formation and selective micron-regional control of PbS quantum dots in glasses using femtosecond laser pulsation[J]. J Mater Chem C, 2015, 3(26):6725–6736.
[31] [31] JANBANDHU S Y, MUNISHWAR S R, GEDAM R S. Synthesis,characterization and photocatalytic degradation efficiency of CdS quantum dots embedded in sodium borosilicate glasses[J]. Appl Surf Sci, 2018, 449: 221–227.
[32] [32] HAN K, YOON S, CHUNG W J. CdS and CdSe quantum dot-embedded silicate glasses for LED color converter[J]. Int J Appl Glass Sci, 2015, 6(2): 103–108.
[33] [33] TANG J, KEMP K W, HOOGLAND S, et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation[J]. Nat Mater, 2011,10(10): 765–771.
[34] [34] WUNDKE K, P?TTING S, AUXIER J, et al. PbS quantum-dot-doped glasses for ultrashort-pulse generation[J]. Appl Phys Lett, 2000, 76(1):10–12.
[35] [35] STAVRINADIS A, BEAL R, SMITH J M, et al. Direct formation of PbS nanorods in a conjugated polymer[J]. Adv Mater, 2008, 20(16):3105–3109.
[36] [36] WATT A, EICHMANN T, RUBINSZTEIN-DUNLOP H, et al. Carrier transport in PbS nanocrystal conducting polymer composites[J]. Appl Phys Lett, 2005, 87(25): 253109.
[37] [37] LIN W J, FRITZ K, GUERIN G, et al. Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid)[J]. Langmuir, 2008, 24(15): 8215–8219.
[38] [38] MARTUCCI A, FICK J, LEBLANC S é, et al. Optical properties of PbS quantum dot doped sol–gel films[J]. J Non Cryst Solids, 2004,345–346: 639–642.
[39] [39] WANG S H, YANG S H. Preparation and characterization of oriented PbS crystalline nanorods in polymer films[J]. Langmuir, 2000, 16(2):389–397.
[40] [40] LI X M, HUANG W G, KRAJNC A, et al. Interfacial alloying between lead halide perovskite crystals and hybrid glasses[J]. Nat Commun,2023, 14(1): 7612.
[41] [41] XIANG X Q, LIN H, LI R F, et al. Stress-induced CsPbBr3 nanocrystallization on glass surface: Unexpected mechanoluminescence and applications[J]. Nano Res, 2019, 12(5): 1049–1054.
[42] [42] ZHANG L Q, LIN H, WANG C Y, et al. A solid-state colorimetric fluorescence Pb2+-sensing scheme: Mechanically-driven CsPbBr3 nanocrystallization in glass[J]. Nanoscale, 2020, 12(16): 8801–8808.
[43] [43] LI P P, XIE W Q, MAO W, et al. Luminescence enhancement of CsPbBr3 quantum dot glasses induced by two unexpected methods:Mechanical and hydration crystallization[J]. J Mater Chem C, 2020,8(2): 473–480.
[44] [44] WANG Y J, ZHANG R L, YUE Y, et al. Room temperature synthesis of CsPbX3 (X= Cl, Br, I) perovskite quantum dots by water-induced surface crystallization of glass[J]. J Alloys Compd, 2020, 818: 152872.
[45] [45] LIU H C, MA J H, GONG J H, et al. The structure and properties of SnF2–SnO–P2O5 glasses[J]. J Non Cryst Solids, 2015, 419: 92–96.
[46] [46] EHRT D. Effect of OH- content on thermal and chemical properties of SnOP2O5 glasses[J]. J Non Cryst Solids, 2008, 354(2–9): 546–552.
[47] [47] GUO Q B, LIU X F, ZHOU S F. Suppression of lanthanide clustering in glass by network topological constraints[J]. J Am Ceram Soc, 2015,98(10): 2976–2979.
[48] [48] ZHOU S F, QIU J R. Topological engineering of doped photonic glasses[J]. MRS Bull, 2017, 42(1): 34–38.
[49] [49] LIU X F, ZHOU J J, ZHOU S F, et al. Transparent glass-ceramics functionalized by dispersed crystals[J]. Prog Mater Sci, 2018, 97:38–96.
[50] [50] ZHANG R, LIN H, YU Y L, et al. A new-generation color converter for high-power white LED: Transparent Ce3+: YAG phosphor-in-glass[J].Laser Photonics Rev, 2014, 8(1): 158–164.
[51] [51] LLORDéS A, GARCIA G, GAZQUEZ J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites[J].Nature, 2013, 500(7462): 323–326.
[52] [52] ZHOU S F, ZHENG B B, SHIMOTSUMA Y, et al.Heterogeneous-surface-mediated crystallization control[J]. NPG Asia Mater, 2016, 8(3): e245.
[53] [53] XU X H, ZHANG W F, YANG D C, et al. Phonon-assisted population inversion in lanthanide-doped upconversion Ba2LaF7 nanocrystals in glass-ceramics[J]. Adv Mater, 2016, 28(36): 8045–8050.
[54] [54] YANES A C, SANTANA-ALONSO A, MéNDEZ-RAMOS J, et al.Novel sol–gel nano-glass–ceramics comprising Ln3+-doped YF3 nanocrystals: Structure and high efficient UV up-conversion[J]. Adv Funct Mater, 2011, 21(16): 3136–3142.
[55] [55] CALVEZ L, MA H L, LUCAS J, et al. Selenium-based glasses and glass ceramics transmitting light from the visible to the far-IR[J]. Adv Mater, 2007, 19(1): 129–132.
[56] [56] ZHOU S F, JIANG N, MIURA K, et al. Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence[J]. J Am Chem Soc, 2010, 132(50): 17945–17952.
[57] [57] EROL E, K?BR?SL? O, ?ELIKBILEK ERSUNDU M, et al.Size-controlled emission of long-time durable CsPbBr3 perovskite quantum dots embedded tellurite glass nanocomposites[J]. Chem Eng J,2020, 401: 126053.
[58] [58] WANG C Y, LIN H, ZHANG Z J, et al. X-ray excited CsPb(Cl, Br)3 perovskite quantum dots-glass composite with long-lifetime[J]. J Eur Ceram Soc, 2020, 40(5): 2234–2238.
[59] [59] ESPIAU DE LAMAESTRE R, BéA H, BERNAS H, et al.Irradiation-induced Ag nanocluster nucleation in silicate glasses:Analogy with photography[J]. Phys Rev B, 2007, 76(20): 205431.
[60] [60] XUE J P, WANG X F, JEONG J H, et al. Fabrication,photoluminescence and applications of quantum dots embedded glass ceramics[J]. Chem Eng J, 2020, 383: 123082.
[61] [61] PANG X L, ZHANG H R, XIE L Q, et al. Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays[J]. J Mater Chem C, 2019, 7(42): 13139–13148.
[62] [62] LI P Z, HU C B, ZHOU L, et al. Novel synthesis and optical characterization of CsPb2Br5 quantum dots in borosilicate glasses[J]. Mater Lett, 2017, 209: 483–485.
[63] [63] YE Y, ZHANG W C, ZHAO Z Y, et al. Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications[J]. Adv Opt Mater, 2019, 7(9): 1801663.
[64] [64] SUN K, TAN. D, FANG X, et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass[J]. Science, 2022, 375, 307–310.
[65] [65] HUANG X, GUO Q, YANG D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium[J]. Nat Photon,2020, 14, 82–88.
[66] [66] EROL E, K?BR?SL? O, ?ELIKBILEK ERSUNDU M, et al. Color tunable emission from Eu3+ and Tm3+ Co-doped CsPbBr3 quantum dot glass nanocomposites[J]. Phys Chem Chem Phys, 2022, 24(3):1486–1495.
[67] [67] YUAN S, CHEN D Q, LI X Y, et al. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing[J]. ACS Appl Mater Interfaces, 2018, 10(22): 18918–18926.
[68] [68] ZHANG H, YANG Z, ZHOU M, et al. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure[J]. Adv Mater, 2021, 33(40): e2102529.
[69] [69] NIU L Y, WANG S K, SUI Z X, et al. Highly stable CsPbBr3 perovskite quantum dot-doped tellurite glass nanocomposite scintillator[J]. Opt Lett, 2021, 46(14): 3448–3451.
[70] [70] PANG X L, SI S C, XIE L Q, et al. Regulating the morphology and luminescence properties of CsPbBr3 perovskite quantum dots through the rigidity of glass network structure[J]. J Mater Chem C, 2020, 8(48):17374–17382.
[71] [71] CHEN D Q, LIU Y, YANG C B, et al. Promoting photoluminescence quantum yields of glass-stabilized CsPbX3 (X = Cl, Br, I) perovskite quantum dots through fluorine doping[J]. Nanoscale, 2019, 11(37):17216–17221.
[72] [72] WEI K, LI P P, DUAN Y M, et al. Temperature-dependent color-tunable luminescence in CsPbBr3: Dy3+ glass ceramic[J]. J Non Cryst Solids, 2021, 570: 121022.
[73] [73] ZHANG K, ZHOU D C, QIU J B, et al. Silver nanoparticles enhanced luminescence and stability of CsPbBr3 perovskite quantum dots in borosilicate glass[J]. J Am Ceram Soc, 2020, 103(4): 2463–2470.
[74] [74] NIU L Y, WANG L, LI W C, et al. Enhanced luminescence and high stability in Gd3+-doped CsPbBr3 perovskite quantum dots glasses for X-ray detection[J]. Ceram Int, 2024, 50(1): 1303–1308.
[75] [75] ZHENG R L, UEDA J, SHINOZAKI K, et al. In situ growth mechanism of CsPbX3 (X = Cl, Br, and I) quantum dots in an amorphous oxide matrix[J]. Chem Mater, 2022, 34(4): 1599–1610.
[76] [76] YE Y, LI K, ZHANG W C, et al. Precipitation of cesium lead halide perovskite nanocrystals in glasses based on liquid phase separation[J]. J Am Ceram Soc, 2022, 105(10): 6105–6115.
Get Citation
Copy Citation Text
NIU Luyue, SUN Yonghao, WANG Ci, REN Jing. Research Progress on Stability of Cesium Lead Halide Perovskite Quantum Dots Glass[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2623
Category:
Received: Nov. 28, 2023
Accepted: --
Published Online: Dec. 4, 2024
The Author Email: Jing REN (ren.jing@hrbeu.edu.cn)