Journal of the Chinese Ceramic Society, Volume. 52, Issue 8, 2623(2024)

Research Progress on Stability of Cesium Lead Halide Perovskite Quantum Dots Glass

NIU Luyue1...2, SUN Yonghao1,2, WANG Ci1,2, and REN Jing13,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(76)

    [1] [1] LI X M, WU Y, ZHANG S L, et al. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Adv Funct Mater, 2016, 26(15): 2435–2445.

    [2] [2] SUN C, ZHANG Y, RUAN C, et al. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots[J]. Adv Mater,2016, 28(45): 10088–10094.

    [3] [3] EPERON G E, HABISREUTINGER S N, LEIJTENS T, et al. The importance of moisture in hybrid lead halide perovskite thin film fabrication[J]. ACS Nano, 2015, 9(9): 9380–9393.

    [4] [4] WANG H C, BAO Z, TSAI H Y, et al. Perovskite quantum dots and their application in light-emitting diodes[J]. Small, 2018, 14(1):1702433.

    [5] [5] HUANG S Q, LI Z C, WANG B, et al. Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination[J]. ACS Appl Mater Interfaces, 2017, 9(8): 7249–7258.

    [6] [6] YANG D D, LI X M, ZENG H B. Surface chemistry of all inorganic halide perovskite nanocrystals: Passivation mechanism and stability[J].Adv Mater Int, 2018, 5(8): 1701662.

    [7] [7] HUANG H, CHEN B K, WANG Z G, et al. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices[J]. Chem Sci, 2016, 7(9): 5699–5703.

    [8] [8] LUO B B, PU Y C, LINDLEY S A, et al. Organolead halide perovskite nanocrystals: Branched capping ligands control crystal size and stability[J]. Angew Chem Int Ed Engl, 2016, 55(31): 8864–8868.

    [9] [9] YAO J S, GE J, HAN B N, et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes[J]. J Am Chem Soc, 2018, 140(10): 3626–3634.

    [10] [10] ZHANG H H, WANG X, LIAO Q, et al. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging[J]. Adv Funct Mater, 2017, 27(7): 1604382.

    [11] [11] HUANG S Q, LI Z C, KONG L, et al. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene[J]. J Am Chem Soc, 2016, 138(18): 5749–5752.

    [12] [12] DIRIN D N, PROTESESCU L, TRUMMER D, et al. Harnessing defect-tolerance at the nanoscale: Highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes[J]. Nano Lett,2016, 16(9): 5866–5874.

    [13] [13] PALAZON F, AKKERMAN Q A, PRATO M, et al. X-ray lithography on perovskite nanocrystals films: From patterning with anion-exchange reactions to enhanced stability in air and water[J]. ACS Nano, 2016,10(1): 1224–1230.

    [14] [14] RAVI V K, SAIKIA S, YADAV S, et al. CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability[J].ACS Energy Lett, 2020, 5(6): 1794–1796.

    [15] [15] WANG H C, LIN S Y, TANG A C, et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display[J]. Angew Chem Int Ed Engl, 2016, 55(28):7924–7929.

    [16] [16] ZHANG F, SHI Z F, LI S, et al. Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting[J]. ACS Appl Mater Interfaces,2019, 11(31): 28013–28022.

    [17] [17] MA Z Z, SHI Z F, WANG L T, et al. Water-induced fluorescence enhancement of lead-free cesium bismuth halide quantum dots by 130% for stable white light-emitting devices[J]. Nanoscale, 2020, 12(6):3637–3645.

    [18] [18] ZHANG F, SHI Z F, MA Z Z, et al. Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices[J]. Nanoscale, 2018,10(43): 20131–20139.

    [19] [19] LI X M, WANG Y, SUN H D, et al. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing[J].Adv Mater, 2017, 29(36): 1701185.

    [20] [20] VELDHUIS S A, NG Y F, AHMAD R, et al. Crown ethers enable room-temperature synthesis of CsPbBr3 quantum dots for light-emitting diodes[J]. ACS Energy Lett, 2018, 3(3): 526–531.

    [21] [21] KRIEG F, OCHSENBEIN S T, YAKUNIN S, et al. Colloidal CsPbX3(X = Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability[J]. ACS Energy Lett, 2018, 3(3):641–646.

    [22] [22] GUARNERA S, ABATE A, ZHANG W, et al. Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer[J]. J Phys Chem Lett, 2015, 6(3): 432–437.

    [23] [23] XU K Y, LIN C C, XIE X B, et al. Efficient and stable luminescence from Mn2+ in core and core-isocrystalline shell CsPbCl3 perovskite nanocrystals[J]. Chem Mater, 2017, 29(10): 4265–4272.

    [24] [24] QIAO B, SONG P J, CAO J Y, et al. Water-resistant, monodispersed and stably luminescent CsPbBr3/CsPb2Br5 core-shell-like structure lead halide perovskite nanocrystals[J]. Nanotechnology, 2017, 28(44):445602.

    [25] [25] LI Z J, HOFMAN E, LI J, et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals[J]. Adv Funct Mater, 2018, 28(1): 1704288.

    [26] [26] AKKERMAN Q A, MEGGIOLARO D, DANG Z Y, et al. Fluorescent alloy CsPbxMn1–xI3 perovskite nanocrystals with high structural and optical stability[J]. ACS Energy Lett, 2017, 2(9): 2183–2186.

    [27] [27] ZHENG F, YANG B B, CAO P Y, et al. A novel bulk phosphor for white LDs: CsPbBr3/Cs4PbBr6 composite quantum dots-embedded borosilicate glass with high PLQY and excellent stability[J]. J Alloys Compd, 2020, 818: 153307.

    [28] [28] YANG Q H, ZHAO L, YU H, et al. UV-shielding device of high-stability glass embedded with in situ growth of ZnO quantum dots[J]. J Alloys Compd, 2019, 784: 535–540.

    [29] [29] DANTAS N O, DE LIMA FERNANDES G, BAFFA O, et al.Cd1–xMnxTe ultrasmall quantum dots growth in a silicate glass matrix by the fusion method[J]. Appl Phys Lett, 2014, 105(13): 132410.

    [30] [30] FAN S H, WU G B, ZHANG H, et al. Formation and selective micron-regional control of PbS quantum dots in glasses using femtosecond laser pulsation[J]. J Mater Chem C, 2015, 3(26):6725–6736.

    [31] [31] JANBANDHU S Y, MUNISHWAR S R, GEDAM R S. Synthesis,characterization and photocatalytic degradation efficiency of CdS quantum dots embedded in sodium borosilicate glasses[J]. Appl Surf Sci, 2018, 449: 221–227.

    [32] [32] HAN K, YOON S, CHUNG W J. CdS and CdSe quantum dot-embedded silicate glasses for LED color converter[J]. Int J Appl Glass Sci, 2015, 6(2): 103–108.

    [33] [33] TANG J, KEMP K W, HOOGLAND S, et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation[J]. Nat Mater, 2011,10(10): 765–771.

    [34] [34] WUNDKE K, P?TTING S, AUXIER J, et al. PbS quantum-dot-doped glasses for ultrashort-pulse generation[J]. Appl Phys Lett, 2000, 76(1):10–12.

    [35] [35] STAVRINADIS A, BEAL R, SMITH J M, et al. Direct formation of PbS nanorods in a conjugated polymer[J]. Adv Mater, 2008, 20(16):3105–3109.

    [36] [36] WATT A, EICHMANN T, RUBINSZTEIN-DUNLOP H, et al. Carrier transport in PbS nanocrystal conducting polymer composites[J]. Appl Phys Lett, 2005, 87(25): 253109.

    [37] [37] LIN W J, FRITZ K, GUERIN G, et al. Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid)[J]. Langmuir, 2008, 24(15): 8215–8219.

    [38] [38] MARTUCCI A, FICK J, LEBLANC S é, et al. Optical properties of PbS quantum dot doped sol–gel films[J]. J Non Cryst Solids, 2004,345–346: 639–642.

    [39] [39] WANG S H, YANG S H. Preparation and characterization of oriented PbS crystalline nanorods in polymer films[J]. Langmuir, 2000, 16(2):389–397.

    [40] [40] LI X M, HUANG W G, KRAJNC A, et al. Interfacial alloying between lead halide perovskite crystals and hybrid glasses[J]. Nat Commun,2023, 14(1): 7612.

    [41] [41] XIANG X Q, LIN H, LI R F, et al. Stress-induced CsPbBr3 nanocrystallization on glass surface: Unexpected mechanoluminescence and applications[J]. Nano Res, 2019, 12(5): 1049–1054.

    [42] [42] ZHANG L Q, LIN H, WANG C Y, et al. A solid-state colorimetric fluorescence Pb2+-sensing scheme: Mechanically-driven CsPbBr3 nanocrystallization in glass[J]. Nanoscale, 2020, 12(16): 8801–8808.

    [43] [43] LI P P, XIE W Q, MAO W, et al. Luminescence enhancement of CsPbBr3 quantum dot glasses induced by two unexpected methods:Mechanical and hydration crystallization[J]. J Mater Chem C, 2020,8(2): 473–480.

    [44] [44] WANG Y J, ZHANG R L, YUE Y, et al. Room temperature synthesis of CsPbX3 (X= Cl, Br, I) perovskite quantum dots by water-induced surface crystallization of glass[J]. J Alloys Compd, 2020, 818: 152872.

    [45] [45] LIU H C, MA J H, GONG J H, et al. The structure and properties of SnF2–SnO–P2O5 glasses[J]. J Non Cryst Solids, 2015, 419: 92–96.

    [46] [46] EHRT D. Effect of OH- content on thermal and chemical properties of SnOP2O5 glasses[J]. J Non Cryst Solids, 2008, 354(2–9): 546–552.

    [47] [47] GUO Q B, LIU X F, ZHOU S F. Suppression of lanthanide clustering in glass by network topological constraints[J]. J Am Ceram Soc, 2015,98(10): 2976–2979.

    [48] [48] ZHOU S F, QIU J R. Topological engineering of doped photonic glasses[J]. MRS Bull, 2017, 42(1): 34–38.

    [49] [49] LIU X F, ZHOU J J, ZHOU S F, et al. Transparent glass-ceramics functionalized by dispersed crystals[J]. Prog Mater Sci, 2018, 97:38–96.

    [50] [50] ZHANG R, LIN H, YU Y L, et al. A new-generation color converter for high-power white LED: Transparent Ce3+: YAG phosphor-in-glass[J].Laser Photonics Rev, 2014, 8(1): 158–164.

    [51] [51] LLORDéS A, GARCIA G, GAZQUEZ J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites[J].Nature, 2013, 500(7462): 323–326.

    [52] [52] ZHOU S F, ZHENG B B, SHIMOTSUMA Y, et al.Heterogeneous-surface-mediated crystallization control[J]. NPG Asia Mater, 2016, 8(3): e245.

    [53] [53] XU X H, ZHANG W F, YANG D C, et al. Phonon-assisted population inversion in lanthanide-doped upconversion Ba2LaF7 nanocrystals in glass-ceramics[J]. Adv Mater, 2016, 28(36): 8045–8050.

    [54] [54] YANES A C, SANTANA-ALONSO A, MéNDEZ-RAMOS J, et al.Novel sol–gel nano-glass–ceramics comprising Ln3+-doped YF3 nanocrystals: Structure and high efficient UV up-conversion[J]. Adv Funct Mater, 2011, 21(16): 3136–3142.

    [55] [55] CALVEZ L, MA H L, LUCAS J, et al. Selenium-based glasses and glass ceramics transmitting light from the visible to the far-IR[J]. Adv Mater, 2007, 19(1): 129–132.

    [56] [56] ZHOU S F, JIANG N, MIURA K, et al. Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence[J]. J Am Chem Soc, 2010, 132(50): 17945–17952.

    [57] [57] EROL E, K?BR?SL? O, ?ELIKBILEK ERSUNDU M, et al.Size-controlled emission of long-time durable CsPbBr3 perovskite quantum dots embedded tellurite glass nanocomposites[J]. Chem Eng J,2020, 401: 126053.

    [58] [58] WANG C Y, LIN H, ZHANG Z J, et al. X-ray excited CsPb(Cl, Br)3 perovskite quantum dots-glass composite with long-lifetime[J]. J Eur Ceram Soc, 2020, 40(5): 2234–2238.

    [59] [59] ESPIAU DE LAMAESTRE R, BéA H, BERNAS H, et al.Irradiation-induced Ag nanocluster nucleation in silicate glasses:Analogy with photography[J]. Phys Rev B, 2007, 76(20): 205431.

    [60] [60] XUE J P, WANG X F, JEONG J H, et al. Fabrication,photoluminescence and applications of quantum dots embedded glass ceramics[J]. Chem Eng J, 2020, 383: 123082.

    [61] [61] PANG X L, ZHANG H R, XIE L Q, et al. Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays[J]. J Mater Chem C, 2019, 7(42): 13139–13148.

    [62] [62] LI P Z, HU C B, ZHOU L, et al. Novel synthesis and optical characterization of CsPb2Br5 quantum dots in borosilicate glasses[J]. Mater Lett, 2017, 209: 483–485.

    [63] [63] YE Y, ZHANG W C, ZHAO Z Y, et al. Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications[J]. Adv Opt Mater, 2019, 7(9): 1801663.

    [64] [64] SUN K, TAN. D, FANG X, et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass[J]. Science, 2022, 375, 307–310.

    [65] [65] HUANG X, GUO Q, YANG D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium[J]. Nat Photon,2020, 14, 82–88.

    [66] [66] EROL E, K?BR?SL? O, ?ELIKBILEK ERSUNDU M, et al. Color tunable emission from Eu3+ and Tm3+ Co-doped CsPbBr3 quantum dot glass nanocomposites[J]. Phys Chem Chem Phys, 2022, 24(3):1486–1495.

    [67] [67] YUAN S, CHEN D Q, LI X Y, et al. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing[J]. ACS Appl Mater Interfaces, 2018, 10(22): 18918–18926.

    [68] [68] ZHANG H, YANG Z, ZHOU M, et al. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure[J]. Adv Mater, 2021, 33(40): e2102529.

    [69] [69] NIU L Y, WANG S K, SUI Z X, et al. Highly stable CsPbBr3 perovskite quantum dot-doped tellurite glass nanocomposite scintillator[J]. Opt Lett, 2021, 46(14): 3448–3451.

    [70] [70] PANG X L, SI S C, XIE L Q, et al. Regulating the morphology and luminescence properties of CsPbBr3 perovskite quantum dots through the rigidity of glass network structure[J]. J Mater Chem C, 2020, 8(48):17374–17382.

    [71] [71] CHEN D Q, LIU Y, YANG C B, et al. Promoting photoluminescence quantum yields of glass-stabilized CsPbX3 (X = Cl, Br, I) perovskite quantum dots through fluorine doping[J]. Nanoscale, 2019, 11(37):17216–17221.

    [72] [72] WEI K, LI P P, DUAN Y M, et al. Temperature-dependent color-tunable luminescence in CsPbBr3: Dy3+ glass ceramic[J]. J Non Cryst Solids, 2021, 570: 121022.

    [73] [73] ZHANG K, ZHOU D C, QIU J B, et al. Silver nanoparticles enhanced luminescence and stability of CsPbBr3 perovskite quantum dots in borosilicate glass[J]. J Am Ceram Soc, 2020, 103(4): 2463–2470.

    [74] [74] NIU L Y, WANG L, LI W C, et al. Enhanced luminescence and high stability in Gd3+-doped CsPbBr3 perovskite quantum dots glasses for X-ray detection[J]. Ceram Int, 2024, 50(1): 1303–1308.

    [75] [75] ZHENG R L, UEDA J, SHINOZAKI K, et al. In situ growth mechanism of CsPbX3 (X = Cl, Br, and I) quantum dots in an amorphous oxide matrix[J]. Chem Mater, 2022, 34(4): 1599–1610.

    [76] [76] YE Y, LI K, ZHANG W C, et al. Precipitation of cesium lead halide perovskite nanocrystals in glasses based on liquid phase separation[J]. J Am Ceram Soc, 2022, 105(10): 6105–6115.

    Tools

    Get Citation

    Copy Citation Text

    NIU Luyue, SUN Yonghao, WANG Ci, REN Jing. Research Progress on Stability of Cesium Lead Halide Perovskite Quantum Dots Glass[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2623

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 28, 2023

    Accepted: --

    Published Online: Dec. 4, 2024

    The Author Email: Jing REN (ren.jing@hrbeu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20230919

    Topics