Acta Optica Sinica, Volume. 44, Issue 1, 0106008(2024)

Research Progress in Scattering Enhanced Microstructured Fiber and Its Distributed Sensing Technology

Hao Li1, Cunzheng Fan1, Xiangpeng Xiao1, Baoqiang Yan1, Junfeng Chen1, Lü Yuejuan1, Zhijun Yan1, and Qizhen Sun1,2、*
Author Affiliations
  • 1School of Optical and Electronic Information, National Engineering Research Center for Next Generation Internet Access-System, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei , China
  • 2School of Future Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei , China
  • show less
    References(79)

    [1] Yuan L B, Tong W J, Jiang S et al. Road map of fiber optic sensor technology in China[J]. Acta Optica Sinica, 42, 0100001(2022).

    [2] Sun Y X, Li H, Fan C Z et al. Review of a specialty fiber for distributed acoustic sensing technology[J]. Photonics, 9, 277(2022).

    [3] Kremp T, Westbrook P S, Feder K S et al. Continuous optical fiber gratings for distributed sensing[C], BW4A.1(2022).

    [4] Sun Q Z, Li H, Fan C Z et al. Research progress of distributed acoustic sensing based on scattering enhanced optical fiber[J]. Laser & Optoelectronics Progress, 59, 2100001(2022).

    [5] Redding B, Murray M J, Donko A et al. Low-noise distributed acoustic sensing using enhanced backscattering fiber with ultra-low-loss point reflectors[J]. Optics Express, 28, 14638-14647(2020).

    [6] Liokumovich L B, Ushakov N A, Kotov O I et al. Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions[J]. Journal of Lightwave Technology, 33, 3660-3671(2015).

    [7] Tsai T E, Saifi M A, Friebele E J et al. Correlation of defect centers with second-harmonic generation in Ge-doped and Ge-P-doped silica-core single-mode fibers[J]. Optics Letters, 14, 1023-1025(1989).

    [8] Sypabekova M, Korganbayev S, Blanc W et al. Fiber optic refractive index sensors through spectral detection of Rayleigh backscattering in a chemically etched MgO-based nanoparticle-doped fiber[J]. Optics Letters, 43, 5945-5948(2018).

    [9] Fuertes V, Grégoire N, Labranche P et al. Engineering nanoparticle features to tune Rayleigh scattering in nanoparticles-doped optical fibers[J]. Scientific Reports, 11, 9116(2021).

    [10] Loranger S, Gagné M, Lambin-Iezzi V et al. Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre[J]. Scientific Reports, 5, 11177(2015).

    [11] Dong L, Archambault J L, Reekie L et al. Single pulse Bragg gratings written during fibre drawing[J]. Electronics Letters, 29, 1577-1578(1993).

    [12] Chojetzki C, Rothhardt M W, Ommer J et al. High-reflectivity draw-tower fiber Bragg gratings:arrays and single gratings of type II[J]. Optical Engineering, 44, 060503(2005).

    [13] Lindner E, Canning J, Chojetzki C et al. Post-hydrogen-loaded draw tower fiber Bragg gratings and their thermal regeneration[J]. Applied Optics, 50, 2519-2522(2011).

    [14] Guo H Y, Tang J G, Li X F et al. On-line writing identical and weak fiber Bragg grating arrays[J]. Chinese Optics Letters, 11, 030602(2013).

    [15] Yang M H, Zhan H, Cheng C et al. Large-capacity and long-distance distributed acoustic sensing based on an ultra-weak fiber Bragg grating array with an optimized pulsed optical power arrangement[J]. Optics Express, 30, 16931-16937(2022).

    [16] Tang J G, Cai L B, Li C L et al. Distributed acoustic sensors with wide frequency response based on UWFBG array utilizing dual-pulse detection[J]. Optical Fiber Technology, 61, 102452(2021).

    [17] Westbrook P S, Feder K S, Ortiz R M et al. Kilometer length, low loss enhanced back scattering fiber for distributed sensing[C](2017).

    [18] Xiao X P, Song Q G, Liu Y B et al. On-line inscribing ultra-weak fiber Bragg grating arrays in UV-transparent coating optical fiber[C], 124-127(2023).

    [19] Lü Y J, Xiao X P, Yang Z Y et al. High spatial resolution and large measurement range strain sensor based on special fiber OFDR system[C](2023).

    [20] Xiao X P, Song Q G, Zhao W L et al. Hybrid coding ultra-weak fiber Bragg grating (UWFBG) array for high spatial resolution temperature sensing[C](2023).

    [21] Fan C Z, Xiao X P, Li H et al. Full link SNR equalization DAS system over 80 km based on gradient discrete scattering enhanced fiber[C], W1J.6(2023).

    [22] Liu D M, He T, Xu Z J et al. New type of microstructure-fiber distributed acoustic sensing technology and its applications[J]. Journal of Applied Sciences, 38, 296-309(2020).

    [23] Juarez J C, Maier E W, Choi K N et al. Distributed fiber-optic intrusion sensor system[J]. Journal of Lightwave Technology, 23, 2081-2087(2005).

    [24] Pan Z Q, Liang K Z, Ye Q et al. Phase-sensitive OTDR system based on digital coherent detection[C](2011).

    [25] Zhang X P, Sun Z H, Shan Y Y et al. A high performance distributed optical fiber sensor based on Φ-OTDR for dynamic strain measurement[J]. IEEE Photonics Journal, 9, 6802412(2017).

    [26] Fang G S, Xu T W, Feng S W et al. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm[J]. Journal of Lightwave Technology, 33, 2811-2816(2015).

    [27] Chen D, Liu Q W, Fan X Y et al. Distributed fiber-optic acoustic sensor with enhanced response bandwidth and high signal-to-noise ratio[J]. Journal of Lightwave Technology, 35, 2037-2043(2017).

    [28] Wu M S, Fan X Y, Liu Q W et al. Highly sensitive quasi-distributed fiber-optic acoustic sensing system by interrogating a weak reflector array[J]. Optics Letters, 43, 3594-3597(2018).

    [29] Liu T, Li H, He T et al. Ultra-high resolution strain sensor network assisted with an LS-SVM based hysteresis model[J]. Opto-Electronic Advances, 4, 200037(2021).

    [30] Wu M S, Fan X Y, Liu Q W et al. Quasi-distributed fiber-optic acoustic sensing system based on pulse compression technique and phase-noise compensation[J]. Optics Letters, 44, 5969-5972(2019).

    [31] Yang W, Fu X L, Wang J Q et al. Demodulation method of identical ultra-weak fiber Bragg grating array based on golay code[C], 256-260(2019).

    [32] Zhang Y X, Fu S Y, Chen Y S et al. A visibility enhanced broadband phase-sensitive OTDR based on the UWFBG array and frequency-division-multiplexing[J]. Optical Fiber Technology, 53, 101995(2019).

    [33] Li H, Fan C Z, Liu T et al. Time-slot multiplexing based bandwidth enhancement for fiber distributed acoustic sensing[J]. Science China Information Sciences, 65, 119303(2021).

    [34] Masoudi A, Beresna M, Brambilla G. 152 km-range single-ended distributed acoustic sensor based on inline optical amplification and a micromachined enhanced-backscattering fiber[J]. Optics Letters, 46, 552-555(2021).

    [35] Hocker G B. Fiber-optic sensing of pressure and temperature[J]. Applied Optics, 18, 1445-1448(1979).

    [36] McMahon G W, Cielo P G. Fiber optic hydrophone sensitivity for different sensor configurations[J]. Applied Optics, 18, 3720-3722(1979).

    [37] Hocker G B. Fiber optic acoustic sensors with composite structure: an analysis[J]. Applied Optics, 18, 3679-3683(1979).

    [38] Lavrov V S, Plotnikov M Y, Aksarin S M et al. Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings[J]. Optical Fiber Technology, 34, 47-51(2017).

    [39] Pang Y D. Research on key technologies of ultra-fine line fiber hydrophone based on drawing tower grating array[D](2020).

    [40] Ding P, Huang J B, Yao G F et al. Weak reflection fiber Bragg grating hydrophone with secondary coating sensitization[J]. Chinese Journal of Lasers, 48, 0906003(2021).

    [41] Ding P, Huang J B, Pang Y D et al. A towed line array with weak fiber Bragg grating hydrophones[J]. Acta Photonica Sinica, 50, 0706004(2021).

    [42] Guo Z, Gao K, Yang H et al. 20-mm-diameter interferometric hydrophone towed array based on fiber Bragg gratings[J]. Acta Optica Sinica, 39, 1106003(2019).

    [43] Li Z Y, Wang C J, Gui X et al. A high-performance fiber-optic hydrophone for large scale arrays[J]. Journal of Lightwave Technology, 41, 4201-4210(2023).

    [44] Fang J, Li Y W, Ji P N et al. Drone detection and localization using enhanced fiber-optic acoustic sensor and distributed acoustic sensing technology[J]. Journal of Lightwave Technology, 41, 822-831(2023).

    [45] Chen J F, Li H, Liu T et al. Fully distributed hydroacoustic sensing based on lightweight optical cable assisted with scattering enhanced fiber[C](2021).

    [46] Chen J F, Li H, Xiao X P et al. Fully distributed hydroacoustic sensing based on ultra-highly sensitive and lightweight fiber-optic hydrophone cable[J]. Optics and Lasers in Engineering, 169, 107734(2023).

    [47] Peng Z Q, Jian J N, Wen H Q et al. Distributed fiber sensor and machine learning data analytics for pipeline protection against extrinsic intrusions and intrinsic corrosions[J]. Optics Express, 28, 27277-27292(2020).

    [48] Li T D, Fan C Z, Li H et al. Nonintrusive distributed flow rate sensing system based on flow-induced vibrations detection[J]. IEEE Transactions on Instrumentation and Measurement, 70, 7001808(2021).

    [50] Yan B Q, Li H, Zhang K Q et al. Quantitative identification and localization for pipeline microleakage by fiber distributed acoustic sensor[J]. Journal of Lightwave Technology, 41, 5460-5467(2023).

    [51] Chen J F, Li H, Xiao X P et al. Fully continuous fiber-optic hydrophone streamer with small channel spacing for marine seismic acquisition[C], W4.45(2022).

    [52] Fan C Z, Li H, Yan B Q et al. High-precision distributed detection of rail defects by tracking the acoustic propagation waves[J]. Optics Express, 30, 39283-39293(2022).

    [53] Hu D, Tian B, Li H et al. Intelligent structure monitoring for tunnel steel loop based on distributed acoustic sensing[C], Ath1S.4(2021).

    [54] Wellbrock G A, Xia T J, Huang M F et al. Perimeter intrusion detection with backscattering enhanced fiber using telecom cables as sensing backhaul[C], M2F.5(2022).

    [55] Wang M H, Zhao K H, Wu J Y et al. Femtosecond laser fabrication of nanograting-based distributed fiber sensors for extreme environmental applications[J]. International Journal of Extreme Manufacturing, 3, 025401(2021).

    [56] Li Y P, Karrenbach M, Ajo-Franklin J[M]. Distributed acoustic sensing in geophysics: methods and applications(2022).

    [57] Li C L, Mei Z H, Cheng C et al. Draw tower grating-based distributed acoustic sensing system and its applications[C](2019).

    [58] Bellefleur G, Schetselaar E, Wade D et al. Vertical seismic profiling using distributed acoustic sensing with scatter-enhanced fibre-optic cable at the Cu-Au New Afton porphyry deposit, British Columbia, Canada[J]. Geophysical Prospecting, 68, 313-333(2020).

    [59] Wu H C, Feder K S, Stolov A A et al. High-temperature enhanced Rayleigh scattering optical fiber sensor for borehole applications[J]. Proceedings of SPIE, 11276, 112760Y(2020).

    [60] Naldrett G, Parker T, Shatalin S et al. High-resolution Carina distributed acoustic fibreoptic sensor for permanent reservoir monitoring and extending the reach into subsea fields[J]. First Break, 38, 71-76(2020).

    [61] Chen J F, Ai K, Li H et al. Full-time on-line tide monitoring based on highly sensitive optic fiber distributed acoustic sensing[C], ATh4I.6(2023).

    [62] Eickhoff W, Ulrich R. Optical frequency domain reflectometry in single-mode fiber[J]. Applied Physics Letters, 39, 693-695(1981).

    [63] Naeem K, Kwon Y S, Chung Y et al. Bend-loss-free distributed sensor based on Rayleigh backscattering in Ge-doped-core PCF[J]. IEEE Sensors Journal, 18, 1903-1910(2018).

    [64] Du C, Fu C L, Li P F et al. High-spatial-resolution strain sensor based on Rayleigh-scattering-enhanced SMF using direct UV exposure[J]. Journal of Lightwave Technology, 41, 1566-1570(2023).

    [65] Moore J P, Rogge M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions[J]. Optics Express, 20, 2967-2973(2012).

    [66] Cui J W, Zhao S Y, Yang C Q et al. Parallel transport frame for fiber shape sensing[J]. IEEE Photonics Journal, 10, 6801012(2017).

    [67] Chen Z E, Wang C H, Ding Z Y et al. Demonstration of large curvature radius shape sensing using optical frequency domain reflectometry in multi-core fibers[J]. IEEE Photonics Journal, 13, 6800809(2021).

    [68] Duncan R G, Froggatt M E, Kreger S T et al. High-accuracy fiber-optic shape sensing[J]. Proceedings of SPIE, 6530, 65301S(2007).

    [69] Parent F, Loranger S, Mandal K K et al. Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers[J]. Biomedical Optics Express, 8, 2210-2221(2017).

    [70] Beisenova A, Issatayeva A, Iordachita I et al. Distributed fiber optics 3D shape sensing by means of high scattering NP-doped fibers simultaneous spatial multiplexing[J]. Optics Express, 27, 22074-22087(2019).

    [71] Westbrook P S, Kremp T, Feder K S et al. Continuous multicore optical fiber grating arrays for distributed sensing applications[J]. Journal of Lightwave Technology, 35, 1248-1252(2017).

    [72] Wolf A, Dostovalov A, Bronnikov K et al. Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses[J]. Optics Express, 27, 13978-13990(2019).

    [73] Lü Y J, Li H L, Yang Z Y et al. Highly accurate 3D shape sensing based on special fiber OFDR system assisted with ICP algorithm[C], Tu1.7(2022).

    [74] Childers B A, Froggatt M E, Allison S G et al. Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure[J]. Proceedings of SPIE, 4332, 133-142(2001).

    [75] Wada D C, Igawa H, Kasai T. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique[J]. Applied Optics, 55, 6953-6959(2016).

    [76] Gui X, Li Z Y, Fu X L et al. High-density distributed crack tip sensing system using dense ultra-short FBG sensors[J]. Sensors, 19, 1702(2019).

    [77] He B, Wang Y L, Wang Y M et al. Study on strain field monitoring system in ship transverse under hydrostatic based on OFDR[C](2022).

    [78] Amantayeva A, Adilzhanova N, Issatayeva A et al. Fiber optic distributed sensing network for shape sensing-assisted epidural needle guidance[J]. Biosensors, 11, 446(2021).

    [80] Al-Ahmad O, Ourak M, van Roosbroeck J et al. Improved FBG-based shape sensing methods for vascular catheterization treatment[J]. IEEE Robotics and Automation Letters, 5, 4687-4694(2020).

    Tools

    Get Citation

    Copy Citation Text

    Hao Li, Cunzheng Fan, Xiangpeng Xiao, Baoqiang Yan, Junfeng Chen, Lü Yuejuan, Zhijun Yan, Qizhen Sun. Research Progress in Scattering Enhanced Microstructured Fiber and Its Distributed Sensing Technology[J]. Acta Optica Sinica, 2024, 44(1): 0106008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Aug. 30, 2023

    Accepted: Oct. 16, 2023

    Published Online: Jan. 12, 2024

    The Author Email: Sun Qizhen (qzsun@mail.hust.edu.cn)

    DOI:10.3788/AOS231490

    Topics