Acta Photonica Sinica, Volume. 53, Issue 5, 0553111(2024)
Regulation Method of Fano Resonance Effect Based on Deep Learning in Micro-ring Resonators
[1] GUARINO A, POBERAJ G, REZZONICO D et al. Electro-optically tunable microring resonators in lithium niobate[J]. Nature Photonics, 1, 407-410(2007).
[2] KRASNOKUTSKA I, TAMBASCO J L J, PERUZZO A. Tunable large free spectral range microring resonators in lithium niobate on insulator[J]. Scientific Reports, 9, 11086(2019).
[3] VERNON Z, SIPE J E. Strongly driven nonlinear quantum optics in microring resonators[J]. Physical Review A, 92, 033840(2015).
[4] JIANG Shuo, XIAO Zhisong, LI Wenxiu et al. Enhanced nanoparticle sensing by mode intensity in a non-reciprocally coupled microcavity[J]. Journal of Applied Physics, 131, 103106(2022).
[5] NAKADAI M, ASANO T, NODA S. Electrically controlled on-demand photon transfer between high-Q photonic crystal nanocavities on a silicon chip[J]. Nature Photonics, 16, 113-118(2022).
[6] CHOI H, HEUCK M, ENGLUND D. Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities[J]. Physical Review Letters, 118, 223605(2017).
[7] LI Beibei, XIAO Yunfeng, ZOU Changling et al. Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators[J]. Applied Physics Letters, 100, 021108(2012).
[8] JAVERZAC-GALY C, PLEKHANOV K, BERNIER N R et al. On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator[J]. Physical Review A, 94, 053815(2016).
[9] DRAKE T E, BRILES T C, STONE J R et al. Terahertz-rate Kerr-microresonator optical clockwork[J]. Physical Review X, 9, 031023(2019).
[10] LI Wenxiu, ZHANG Hao, LIU Jiaming et al. On-chip high-sensitivity temperature sensor based on gain-loss coupled microresonators[J]. Journal of the Optical Society of America B, 34, 1765-1770(2017).
[11] FAN Shanhui. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems[J]. Applied Physics Letters, 80, 908-910(2002).
[12] GU Linpeng, FANG Liang, FANG Hanlin et al. Fano resonance lineshapes in a waveguide-microring structure enabled by an air-hole[J]. APL Photonics, 5, 016108(2020).
[13] GU Linpeng, FANG Hanlin, LI Juntao et al. A compact structure for realizing Lorentzian, Fano, and electromagnetically induced transparency resonance lineshapes in a microring resonator[J]. Nanophotonics, 8, 841-848(2019).
[14] WANG Jun, LIN Jie, JIN Peng et al. Fano resonance in a microring resonator with a micro-reflective unit[J]. Optics Express, 31, 31587-31596(2023).
[15] MOLESKY S, LIN Z, PIGGOTT A Y et al. Inverse design in nanophotonics[J]. Nature Photonics, 12, 659-670(2018).
[16] JIANG Jiaqi, CHEN Mingkun, FAN J A. Deep neural networks for the evaluation and design of photonic devices[J]. Nature Reviews Materials, 6, 679-700(2021).
[17] MAFI M, ESMAILE A H. Inverse design of a high‐quality factor multi‐purpose optical biosensor[J]. IET Optoelectronics, 16, 266-276(2022).
[18] XIA Peipei, ZHANG Li, LI Fanzhang. Learning similarity with cosine similarity ensemble[J]. Information Sciences, 307, 39-52(2015).
Get Citation
Copy Citation Text
Xin SUN, Wenxiu LI, Shuo JIANG, Zongqi YANG, Xinyao HUANG, Hao ZHANG, Anping HUANG, Zhisong XIAO. Regulation Method of Fano Resonance Effect Based on Deep Learning in Micro-ring Resonators[J]. Acta Photonica Sinica, 2024, 53(5): 0553111
Category: Special Issue for Microcavity Photonics
Received: Feb. 29, 2024
Accepted: Apr. 15, 2024
Published Online: Jun. 20, 2024
The Author Email: Wenxiu LI (liwenxiu@buaa.edu.cn), Hao ZHANG (haozhang@buaa.edu.cn)