Matter and Radiation at Extremes, Volume. 6, Issue 1, 015902(2021)

A model for defect formation in materials exposed to radiation

Sergio Davis1...2, Felipe González-Cataldo3,4, Gonzalo Gutiérrez4, Gonzalo Avaria1,2, Biswajit Bora1,2, Jalaj Jain1, José Moreno1,2, Cristian Pavez1,2, and Leopoldo Soto12 |Show fewer author(s)
Author Affiliations
  • 1Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile
  • 2Departamento de Física, Facultad de Ciencias Exactas, Universidad Andres Bello, Sazié 2212, piso 7, Santiago 8370136, Chile
  • 3Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
  • 4Grupo de Nanomateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
  • show less
    References(66)

    [1] V. A. Gribkov, O. A. Kost, M. A. Orlova et al. Enzyme activation and inactivation induced by low doses of irradiation. Appl. Biochem. Biotechnol., 88, 243-255(2000).

    [2] S. C. Bott, D. M. Haas, J. Kim et al. Supersonic jet formation and propagation in x-pinches. Astrophys. Space Sci., 336, 33-40(2011).

    [3] I. V. Borovitskaya, E. V. Demina, V. A. Gribkov et al. Application of dense plasma focus devices and lasers in the radiation material sciences for the goals of inertial fusion beyond ignition. Matter Radiat. Extremes, 5, 045403(2020).

    [4] R. Gonzalez-Arrabal, J. M. Perlado, A. Rivera. Limitations for tungsten as plasma facing material in the diverse scenarios of the European inertial confinement fusion facility HiPER: Current status and new approaches. Matter Radiat. Extremes, 5, 055201(2020).

    [5] Y. Li, M. P. Short, Y. Yang et al. Ion radiation albedo effect: Influence of surface roughness on ion implantation and sputtering of materials. Nucl. Fusion, 57, 016038(2017).

    [6] G. Cheng, W. Xu, Y. Zhang et al. In-situ atomic-scale observation of irradiation-induced void formation. Nat. Commun., 4, 2288(2013).

    [7] E. Artacho, M. T. Dove, K. Trachenko et al. Atomistic simulations of resistance to amorphization by radiation damage. Phys. Rev. B, 73, 174207(2006).

    [8] E. Bringa, E. Figueroa, G. Gutiérrez, D. Tramontina. Mechanical properties of irradiated nanowires—A molecular dynamics study. J. Nucl. Mater., 467, 677-682(2015).

    [9] R. G. Hoagland, B. P. Uberuaga, S. M. Valone, A. F. Voter. Direct transformation of vacancy voids to stacking fault tetrahedra. Phys. Rev. Lett., 99, 135501(2007).

    [10] G. S. Was. Fundamentals of Radiation Materials Science(2017).

    [11] B. Verberck. Building the way to fusion energy. Nat. Phys., 12, 395-397(2016).

    [12] E. I. Moses. Advances in inertial confinement fusion at the National Ignition Facility (NIF). Fusion Eng. Des., 85, 983-986(2010).

    [13] D. A. Callahan, D. T. Casey, O. A. Hurricane et al. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343-348(2014).

    [14] A. W. Leonard. Edge-localized-modes in tokamaks. Phys. Plasmas, 21, 090501(2014).

    [15] J. N. Brooks, G. Federici, C. H. Skinner et al. Plasma-material interactions in current tokamaks and their implications for next step fusion reactors. Nucl. Fusion, 41, 1967(2001).

    [16] J. Alvarez, R. González-Arrabal, A. Rivera et al. Potential common radiation problems for components and diagnostics in future magnetic and inertial confinement fusion devices. Fusion Eng. Des., 86, 1762-1765(2011).

    [17] M. Fujitsuka, H. Shinno, H. Shiraishi, T. Tanabe. Thermal shock experiments for carbon materials by electron beams. J. Nucl. Mater., 179-181, 189-192(1991).

    [18] F. Escourbiac, J. Linke, I. V. Mazul et al. High heat flux testing of plasma facing materials and components—Status and perspectives for iter related activities. J. Nucl. Matter, 367, 1422-1431(2007).

    [19] T. Barashkova, T. Laas, V. Pelõhh. Methods for estimating the damage factor of materials under the influence of plasma, 22-24(2010).

    [20] B. Bienkowska, M. Borowiecki, V. A. Gribkov et al. Plasma dynamics in PF-1000 device under full-scale energy storage: I. Pinch dynamics, shock-wave diffraction, and inertial electrode. J. Phys. D: Appl. Phys., 40, 1977-1989(2007).

    [21] L. I. Ivanov, S. A. Maslyaev, V. N. Pimenov et al. Surface and bulk processes in materials induced by pulsed ion and plasma beams at dense plasma focus devices. Nukleonika, 51, 71-78(2006).

    [22] E. V. Demina, S. A. Maslyaev, V. N. Pimenov et al. Damage and modification of materials produced by pulsed ion and plasma streams in dense plasma focus device. Nukleonika, 53, 111-121(2008).

    [23] J. Moreno, C. Pavez, L. Soto et al. Characterization of the axial plasma shock in a table top plasma focus after the pinch and its possible application to testing materials for fusion reactors. Phys. Plasmas, 21, 122703(2014).

    [24] A. N. Bandura, O. V. Byrka, I. E. Garkusha et al. Damage to preheated tungsten targets after multiple plasma impacts simulating iter elms. J. Nucl. Mater., 386, 127-131(2009).

    [25] V. A. Gribkov, L. I. Ivanov, V. N. Pimenov et al. Interaction of high temperature deuterium plasma streams and fast ion beams with stainless steels in dense plasma focus device. J. Phys. D: Appl. Phys., 36, 1817(2003).

    [26] A. Ainsaar, T. Laas, V. Shirokova et al. Comparison of damages in tungsten and tungsten doped with lanthanum-oxide exposed to dense deuterium plasma shots. J. Nucl. Matter, 435, 181-188(2013).

    [27] M. J. Inestrosa-Izurieta, E. Ramos-Moore, L. Soto. Morphological and structural effects on tungsten targets produced by fusion plasma pulses from a table top plasma focus. Nucl. Fusion, 55, 093011(2015).

    [28] S. Lee, A. Serban. Dimensions and lifetime of the plasma focus pinch. IEEE Trans. Plasma Sci., 24, 1101-1105(1996).

    [29] W. Kies, J. Moreno, P. Silva, L. Soto. Pinch evidence in a fast and small plasma focus of only tens of joules. Plasma Sources Sci. Technol., 13, 329(2004).

    [30] L. Soto. New trends and future perspectives on plasma focus research. Plasma Phys. Controlled Fusion, 47, A361(2005).

    [31] C. Pavez, L. Soto, A. Tarifeño et al. Studies on scalability and scaling laws for the plasma focus: Similarities and differences in devices from 1 MJ to 0.1 J. Plasma Sources Sci. Technol., 19, 055017(2010).

    [32] J. Moreno, P. Silva, L. Soto et al. Neutron emission from a fast plasma focus of 400 Joules. Appl. Phys. Lett., 83, 3269-3271(2003).

    [33] M. Milanese, R. Moroso, J. Pouzo. DD neutron yield in the 125 J dense plasma focus nanofocus. Eur. Phys. J. D, 27, 77-81(2003).

    [34] P. Lee, R. S. Rawat, R. Verma et al. Experimental study of neutron emission characteristics in a compact sub-kilojoule range miniature plasma focus device. Plasma Phys. Controlled Fusion, 51, 075008(2009).

    [35] C. Pavez, J. Pedreros, M. Zambra et al. Potentiality of a small and fast dense plasma focus as hard x-ray source for radiographic applications. Plasma Phys. Controlled Fusion, 54, 105018(2012).

    [36] J. L. Ellsworth, S. Falabella, V. Tang et al. Design and initial results from a kilojoule level dense plasma focus with hollow anode and cylindrically symmetric gas puff. Rev. Sci. Instrum., 85, 013504(2014).

    [37] H. Acuña, M. Barbaglia, H. Bruzzone et al. Experimental study of the hard x-ray emissions in a plasma focus of hundreds of joules. Plasma Phys. Controlled Fusion, 51, 045001(2009).

    [38] J. Moreno, P. Silva, L. Soto et al. A plasma focus driven by a capacitor bank of tens of joules. Rev. Sci. Instrum., 73, 2583-2587(2002).

    [39] Y. Kobayashi, S. R. Mohanty, T. Sakamoto et al. Miniature hybrid plasma focus extreme ultraviolet source driven by 10 kA fast current pulse. Rev. Sci. Instrum., 77, 043506(2006).

    [40] J. Moreno, P. Silva, L. Soto et al. Demonstration of neutron production in a table-top pinch plasma focus device operating at only tens of joules. J. Phys. D: Appl. Phys., 41, 205215(2008).

    [41] P. Lee, R. S. Rawat, R. Verma et al. Miniature plasma focus device as a compact hard x-ray source for fast radiography applications. IEEE Trans. Plasma Sci., 38, 652-657(2010).

    [42] P. Banerjee, S. K. Sharma, R. Shukla et al. Low voltage operation of plasma focus. Rev. Sci. Instrum., 81, 083501(2010).

    [43] B. L. Bures, C. James, M. Krishnan. A plasma focus electronic neutron generator. IEEE Trans. Plasma Sci., 40, 1082-1088(2012).

    [44] L. Soto, A. Tarifeño-Saldivia. Statistical characterization of the reproducibility of neutron emission of small plasma focus devices. Phys. Plasmas, 19, 092512(2012).

    [45] P. Mishra, R. Niranjan, R. K. Rout et al. Palm top plasma focus device as a portable pulsed neutron source. Rev. Sci. Instrum., 84, 063503(2013).

    [46] J. Moreno, C. Pavez, L. Soto et al. Nanofocus: An ultra-miniature dense pinch plasma focus device with submillimetric anode operating at 0.1 J. Plasma Sources Sci. Technol., 18, 015007(2008).

    [47] C. Pavez, L. Soto. Demonstration of x-ray emission from an ultraminiature pinch plasma focus discharge operating at 0.1 J nanofocus. IEEE Trans. Plasma Sci., 38, 1132-1135(2010).

    [48] H. N. Acuña, M. O. Barbaglia, H. Bruzzone et al. Electrical behavior of an ultralow-energy plasma-focus device. IEEE Trans. Plasma Sci., 42, 138-142(2014).

    [49] J. Moreno, C. Pavéz, L. Soto et al. Evidence of nuclear fusion neutrons in an extremely small plasma focus device operating at 0.1 Joules. Phys. Plasmas, 24, 082703(2017).

    [50] S. Davis, C. Pavez, L. Soto et al. Material studies for inertial fusion devices using pulsed plasma shocks from a repetitive table top plasma focus device, 187-203(2019).

    [51] R. Zwanzig. Nonequilibrium Statistical Mechanics(2001).

    [52] N. G. Van Kampen. Stochastic Processes in Physics and Chemistry(2007).

    [53] T. S. Noggle, O. S. Oen. Reduction in radiation damage due to channeling of 51-MeV iodine ions in gold. Phys. Rev. Lett., 16, 395(1966).

    [54] M. Hillert. Phase Equilibria, Phase Diagrams and Phase Transformations(2007).

    [55] A. B. Belonoshko, S. Davis, B. Johansson, A. Rosengren. Model for diffusion at the microcanonical superheating limit from atomistic computer simulations. Phys. Rev. B, 84, 064102(2011).

    [56] J. Fikar, R. Schäublin. Molecular dynamics simulation of radiation damage in bcc tungsten. J. Nucl. Matter, 386, 97-101(2009).

    [57] K. Nordlund, A. E. Sand, S. J. Zinkle et al. Primary radiation damage: A review of current understanding and models. J. Nucl. Matter, 512, 450-479(2018).

    [58] R. W. Balluffi, R. O. Simmons. Measurement of equilibrium concentrations of vacancies in copper. Phys. Rev., 129, 1533(1963).

    [59] S. Davis, J. Peralta, M. J. Pozo. Statistical distribution of thermal vacancies close to the melting point. Physica A, 457, 310-313(2015).

    [60] R. A. Konchakov, Y. P. Mitrofanov, E. V. Safonova et al. Experimental evidence for thermal generation of interstitials in a metallic crystal near the melting temperature. J. Phys.: Condens. Matter, 28, 215401(2016).

    [61] V. I. Dubinko, K. Schwartz, M. V. Sorokin et al. Kinetics of lattice defects induced in lithium fluoride crystals during irradiation with swift ions at room temperature. Nucl. Instrum. Methods Phys. Res., Sect. B, 466, 17-19(2020).

    [62] V. Kashcheyevs, E. A. Kotomin, V. N. Kuzovkov et al. Modeling of primary defect aggregation in tracks of swift heavy ions in LiF. Phys. Rev. B, 64, 144108(2001).

    [63] C.-C. Fu, J. D. Torre, F. Willaime et al. Multiscale modelling of defect kinetics in irradiated iron. Nat. Mater., 4, 68-74(2004).

    [64] G. De Temmerman, R. P. Doerner, J. H. Yu et al. The effect of transient temporal pulse shape on surface temperature and tungsten damage. Nucl. Fusion, 55, 093027(2015).

    [65] T. W. Morgan, H. J. Van Der Meiden, G. G. Van Eden et al. The effect of high-flux H plasma exposure with simultaneous transient heat loads on tungsten surface damage and power handling. Nucl. Fusion, 54, 123010(2014).

    [66] D. Garoz, A. R. Páramo, A. Rivera et al. Modelling the thermomechanical behaviour of the tungsten first wall in HiPER laser fusion scenarios. Nucl. Fusion, 56, 126014(2016).

    Tools

    Get Citation

    Copy Citation Text

    Sergio Davis, Felipe González-Cataldo, Gonzalo Gutiérrez, Gonzalo Avaria, Biswajit Bora, Jalaj Jain, José Moreno, Cristian Pavez, Leopoldo Soto. A model for defect formation in materials exposed to radiation[J]. Matter and Radiation at Extremes, 2021, 6(1): 015902

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Inertial Confinement Fusion Physics

    Received: Sep. 22, 2020

    Accepted: Nov. 29, 2020

    Published Online: Apr. 22, 2021

    The Author Email:

    DOI:10.1063/5.0030158

    Topics