Journal of the Chinese Ceramic Society, Volume. 51, Issue 10, 2566(2023)

Dual-Ions Substituted Hydroxyapatite Materials and Their Application in Hard Tissue Engineering

ZHONG Zhenyu1...2,3,*, XU Jun1,2,3, SUN Zeyu1,2,3, FAN Yibo1,2,3, DU Yingying1,2,3, and ZHANG Shengmin1,23 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(73)

    [1] [1] ZHU G Y, ZHANG T X, CHEN M, et al. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds[J]. Bioact Mater, 2021, 6(11): 4110-4140.

    [2] [2] IELO I, CALABRESE G, DE LUCA G, et al. Recent advances in hydroxyapatite-based biocomposites for bone tissue regeneration in orthopedics[J]. Int J Mol Sci, 2022, 23(17): 9721.

    [5] [5] YANG G J, LIU H M, HU X X, et al. Bio-inspired hybrid nanoparticles promote vascularized bone regeneration in a morphology-dependent manner[J]. Nanoscale, 2017, 9(18): 5794-5805.

    [6] [6] MA J, WANG J L, AI X, et al. Biomimetic self-assembly of apatite hybrid materials: From a single molecular template to Bi-/ multi-molecular templates[J]. Biotechnol Adv, 2014, 32(4): 744-760.

    [7] [7] LI Y, HAO H, ZHONG Z Y, et al. Assembly mechanism of highly crystalline selenium-doped hydroxyapatite nanorods via particle attachment and their effect on the fate of stem cells[J]. ACS Biomater Sci Eng, 2019, 5(12): 6703-6714.

    [8] [8] WANG J L, YANG G J, WANG Y F, et al. Chimeric protein template-induced shape control of bone mineral nanoparticles and its impact on mesenchymal stem cell fate[J]. Biomacromolecules, 2015, 16(7): 1987-1996.

    [9] [9] ZHAO C C, WANG X Y, GAO L, et al. The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells[J]. Acta Biomater, 2018, 73: 509-521.

    [10] [10] TITE T, POPA A C, BALESCU L M, et al. Cationic substitutions in hydroxyapatite: Current status of the derived biofunctional effects and their in vitro interrogation methods[J]. Materials, 2018, 11(11): 2081.

    [11] [11] WANG Y H, MA J, ZHOU L, et al. Dual functional selenium- substituted hydroxyapatite[J]. Interface Focus, 2012, 2(3): 378-386.

    [12] [12] CUI W, SUN G F, QU Y Z, et al. Repair of rat calvarial defects using Si-doped hydroxyapatite scaffolds loaded with a bone morphogenetic protein-2-related peptide[J]. J Orthop Res, 2016, 34(11): 1874-1882.

    [13] [13] QIU Z Y, NOH I S, ZHANG S M. Silicate-doped hydroxyapatite and its promotive effect on bone mineralization[J]. Front Mater Sci, 2013, 7(1): 40-50.

    [14] [14] YANG Q, DU Y Y, WANG Y F, et al. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration[J]. Front Mater Sci, 2017, 11(2): 106-119.

    [15] [15] HU W, MA J, WANG J L, et al. Fine structure study on low concentration zinc substituted hydroxyapatite nanoparticles[J]. Mater Sci Eng C, 2012, 32(8): 2404-2410.

    [16] [16] HUANG H Y, PAN W Y, WANG Y F, et al. Nanoparticulate cell-free DNA scavenger for treating inflammatory bone loss in periodontitis[J]. Nat Commun, 2022, 13(1): 5925.

    [18] [18] EVIS Z, WEBSTER T J. Nanosize hydroxyapatite: Doping with various ions[J]. Adv Appl Ceram, 2011, 110(5): 311-321.

    [19] [19] ARCOS D, VALLET-REG M. Substituted hydroxyapatite coatings of bone implants[J]. J Mater Chem B, 2020, 8(9): 1781-1800.

    [20] [20] RATNAYAKE J T B, MUCALO M, DIAS G J. Substituted hydroxyapatites for bone regeneration: A review of current trends[J]. J Biomed Mater Res, 2017, 105(5): 1285-1299.

    [21] [21] GRAZIANI G, BOI M, BIANCHI M. A review on ionic substitutions in hydroxyapatite thin films: Towards complete biomimetism[J]. Coatings, 2018, 8(8): 269.

    [22] [22] BASU S, BASU B. Unravelling doped biphasic calcium phosphate: Synthesis to application[J]. ACS Appl Bio Mater, 2019, 2(12): 5263-5297.

    [23] [23] KUMAR R, MOHANTY S. Hydroxyapatite: A versatile bioceramic for tissue engineering application[J]. J Inorg Organomet Polym Mater, 2022, 32(12): 4461-4477.

    [24] [24] BASU S, BASU B. Doped biphasic calcium phosphate: Synthesis and structure[J]. J Asian Ceram Soc, 2019, 7(3): 265-283.

    [25] [25] MOHAMMADI ZAHRANI E, FATHI M H. The effect of high-energy ball milling parameters on the preparation and characterization of fluorapatite nanocrystalline powder[J]. Ceram Int, 2009, 35(6): 2311-2323.

    [26] [26] KHERADMANDFARD M, FATHI M H, ANSARI F, et al. Effect of Mg content on the bioactivity and biocompatibility of Mg-substituted fluorapatite nanopowders fabricated via mechanical activation[J]. Mater Sci Eng C, 2016, 68: 136-142.

    [27] [27] SZURKOWSKA K, DROBNIEWSKA A, KOLMAS J. Dual doping of silicon and manganese in hydroxyapatites: Physicochemical properties and preliminary biological studies[J]. Materials, 2019, 12(16): 2566.

    [28] [28] MARIAPPAN A, PANDI P, BEULA RANI K R, et al. Study of the photocatalytic and antibacterial effect of Zn and Cu doped hydroxyapatite[J]. Inorg Chem Commun, 2022, 136: 109128.

    [29] [29] KAYGILI O, KESER S. Sol-gel synthesis and characterization of Sr/Mg, Mg/Zn and Sr/Zn co-doped hydroxyapatites[J]. Mater Lett, 2015, 141: 161-164.

    [30] [30] MATIC T, ZEBIC M L, MILETIC V, et al. Sr, Mg co-doping of calcium hydroxyapatite: Hydrothermal synthesis, processing, characterization and possible application as dentin substitutes[J]. Ceram Int, 2022, 48(8): 11155-11165.

    [31] [31] LI Y F, WANG W Y, HAN J, et al. Synthesis of silver- and strontium-substituted hydroxyapatite with combined osteogenic and antibacterial activities[J]. Biol Trace Elem Res, 2022, 200(2): 931-942.

    [32] [32] ULLAH I, GLORIA A, ZHANG W C, et al. Synthesis and characterization of sintered Sr/Fe-modified hydroxyapatite bioceramics for bone tissue engineering applications[J]. ACS Biomater Sci Eng, 2020, 6(1): 375-388.

    [33] [33] JIA M F, HONG Y P, DUAN S Y, et al. The influence of transition metal ions on collagen mineralization[J]. Mater Sci Eng C, 2013, 33(4): 2399-2406.

    [34] [34] ZHONG Z Y, WU X D, WANG Y F, et al. Zn/Sr dual ions-collagen co-assembly hydroxyapatite enhances bone regeneration through procedural osteo-immunomodulation and osteogenesis[J]. Bioact Mater, 2021, 10: 195-206.

    [35] [35] SULLIVAN C O, NEILL L O, et al. Osteointegration, antimicrobial and antibiofilm activity of orthopaedic titanium surfaces coated with silver and strontium-doped hydroxyapatite using a novel blasting process[J]. Drug Deliv Transl Res, 2021, 11(2): 702-716.

    [36] [36] DITTLER M L, UNALAN I, GRNEWALD A, et al. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications[J]. Colloids Surf B Biointerfaces, 2019, 182: 110346.

    [37] [37] GARBO C, LOCS J, D'ESTE M, et al. Advanced Mg, Zn, Sr, Si multi-substituted hydroxyapatites for bone regeneration[J]. Int J Nanomedicine, 2020, 15: 1037-1058.

    [38] [38] TAN S L, WANG Y F, DU Y Y, et al. Injectable bone cement with magnesium-containing microspheres enhances osteogenesis via anti-inflammatory immunoregulation[J]. Bioact Mater, 2021, 6(10): 3411-3423.

    [39] [39] HAYASHI K, KISHIDA R, TSUCHIYA A, et al. Honeycomb blocks composed of carbonate apatite, β-tricalcium phosphate, and hydroxyapatite for bone regeneration: Effects of composition on biological responses[J]. Mater Today Bio, 2019, 4: 100031.

    [40] [40] LI B H, LEI Y, HU Q S, et al. Porous copper- and lithium-doped nano-hydroxyapatite composite scaffold promotes angiogenesis and bone regeneration in the repair of glucocorticoids-induced osteonecrosis of the femoral head[J]. Biomed Mater, 2021, 16(6): 065012.

    [41] [41] LIN K L, WANG X H, ZHANG N, et al. Strontium (Sr) strengthens the silicon (Si) upon osteoblast proliferation, osteogenic differentiation and angiogenic factor expression[J]. J Mater Chem B, 2016, 4(21): 3632-3638.

    [42] [42] WANG J Y, LIU Y C, LIN G S, et al. Flame-sprayed strontium- and magnesium-doped hydroxyapatite on titanium implants for osseointegration enhancement[J]. Surf Coat Technol, 2020, 386: 125452.

    [43] [43] SZURKOWSKA K, KAZIMIERCZAK P, KOLMAS J. Mg, Si-co-substituted hydroxyapatite/alginate composite beads loaded with raloxifene for potential use in bone tissue regeneration[J]. Int J Mol Sci, 2021, 22(6): 2933.

    [44] [44] KULANTHAIVEL S, MISHRA U, AGARWAL T, et al. Improving the osteogenic and angiogenic properties of synthetic hydroxyapatite by dual doping of bivalent cobalt and magnesium ion[J]. Ceram Int, 2015, 41(9): 11323-11333.

    [45] [45] CUI W, YANG L, ULLAH I, et al. Biomimetic porous scaffolds containing decellularized small intestinal submucosa and Sr2+/Fe3+ co-doped hydroxyapatite accelerate angiogenesis/osteogenesis for bone regeneration[J]. Biomed Mater, 2022, 17(2): 025008.

    [46] [46] BARBANENTE A, NADAR R A, ESPOSTI L D, et al. Platinum-loaded, selenium-doped hydroxyapatite nanoparticles selectively reduce proliferation of prostate and breast cancer cells co-cultured in the presence of stem cells[J]. J Mater Chem B, 2020, 8(14): 2792-2804.

    [47] [47] PARK S, CHOI J, DOAN V H M, et al. Biodegradable manganese-doped hydroxyapatite antitumor adjuvant as a promising photo-therapeutic for cancer treatment[J]. Front Mol Biosci, 2022, 9: 1085458.

    [48] [48] CHEN M H, HANAGATA N, IKOMA T, et al. Hafnium-doped hydroxyapatite nanoparticles with ionizing radiation for lung cancer treatment[J]. Acta Biomater, 2016, 37: 165-173.

    [49] [49] SUN J P, ZHENG X Y, LI H, et al. Monodisperse selenium-substituted hydroxyapatite: Controllable synthesis and biocompatibility[J]. Mater Sci Eng C, 2017, 73: 596-602.

    [50] [50] CHOI S, COONROD S, ESTROFF L, et al. Chemical and physical properties of carbonated hydroxyapatite affect breast cancer cell behavior[J]. Acta Biomater, 2015, 24: 333-342.

    [51] [51] LI X, WANG Y F, CHEN Y, et al. Hierarchically constructed selenium-doped bone-mimetic nanoparticles promote ROS-mediated autophagy and apoptosis for bone tumor inhibition[J]. Biomaterials, 2020, 257: 120253.

    [52] [52] WANG Y H, HAO H, ZHANG S M. Biomimetic coprecipitation of silk fibrin and calcium phosphate: Influence of selenite ions[J]. Biol Trace Elem Res, 2017, 178(2): 338-347.

    [53] [53] WANG Y H, HAO H, LIU H M, et al. Selenite-releasing bone mineral nanoparticles retard bone tumor growth and improve healthy tissue functions in vivo[J]. Adv Healthc Mater, 2015, 4(12): 1813-1818.

    [54] [54] WANG Y F, WANG J L, HAO H, et al. In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles[J]. ACS Nano, 2016, 10(11): 9927-9937.

    [55] [55] LI S H, HE Y, LI J, et al. Titanium scaffold loaded with strontium and copper double-doped hydroxyapatite can inhibit bacterial growth and enhance osteogenesis[J]. J Biomater Appl, 2022, 37(2): 195-203.

    [56] [56] KOLMAS J, PIOTROWSKA U, KURAS M, et al. Effect of carbonate substitution on physicochemical and biological properties of silver containing hydroxyapatites[J]. Mater Sci Eng C, 2017, 74: 124-130.

    [57] [57] LIM P N, WANG Z Y, TONG S Y, et al. Silver, silicon co-substituted hydroxyapatite modulates bacteria-cell competition for enhanced osteogenic function[J]. Biomed Mater, 2021, 16(5): 055018.

    [58] [58] MAQBOOL M, NAWAZ Q, ATIQ UR REHMAN M, et al. Synthesis, characterization, antibacterial properties, and in vitro studies of selenium and strontium co-substituted hydroxyapatite[J]. Int J Mol Sci, 2021, 22(8): 4246.

    [59] [59] GRITSCH L, MAQBOOL M, MOURIO V, et al. Chitosan/ hydroxyapatite composite bone tissue engineering scaffolds with dual and decoupled therapeutic ion delivery: Copper and strontium[J]. J Mater Chem B, 2019, 7(40): 6109-6124.

    [60] [60] DASHNYAM K, BUITRAGO J O, BOLD T, et al. Angiogenesis- promoted bone repair with silicate-shelled hydrogel fiber scaffolds[J]. Biomater Sci, 2019, 7(12): 5221-5231.

    [61] [61] CHENG D W, DING R Y, JIN X, et al. Strontium ion-functionalized nano-hydroxyapatite/chitosan composite microspheres promote osteogenesis and angiogenesis for bone regeneration[J]. ACS Appl Mater Interfaces, 2023, 15(16): 19951-19965.

    [62] [62] YU S K, SUN T, LIU W, et al. PLGA cage-like structures loaded with Sr/Mg-doped hydroxyapatite for repairing osteoporotic bone defects[J]. Macromol Biosci, 2022, 22(8): 2270023.

    [63] [63] ZHAO D W, YU M Z, ZHAO Y X, et al. Improvement of bone formation by bionic hydroxyapatite nanorod via the regulation of macrophage polarization[J]. J Mater Sci Technol, 2023, 136: 109-120.

    [64] [64] JIANG J W, LIU W B, XIONG Z X, et al. Effects of biomimetic hydroxyapatite coatings on osteoimmunomodulation[J]. Biomater Adv, 2022, 134: 112640.

    [65] [65] ZHANG L, LIANG Z H, CHEN C, et al. Engineered hydroxyapatite nanoadjuvants with controlled shape and aspect ratios reveal their immunomodulatory potentials[J]. ACS Appl Mater Interfaces, 2021, 13(50): 59662-59672.

    [66] [66] LI T, HE H T, YANG Z Z, et al. Strontium-doped gelatin scaffolds promote M2 macrophage switch and angiogenesis through modulating the polarization of neutrophils[J]. Biomater Sci, 2021, 9(8): 2931-2946.

    [67] [67] WANG X P, IHARA S, LI X, et al. Si-doping increases the adjuvant activity of hydroxyapatite nanorods[J]. Colloids Surf B Biointerfaces, 2019, 174: 300-307.

    [68] [68] YANG L, ULLAH I, YU K D, et al. Bioactive Sr2+/Fe3+ co-substituted hydroxyapatite in cryogenically 3D printed porous scaffolds for bone tissue engineering[J]. Biofabrication, 2021, 13(3): 035007 .

    [69] [69] LIU Z G, WANG Q, YAO S W, et al. Synthesis and characterization of Tb3+/Gd3+ dual-doped multifunctional hydroxyapatite nanoparticles[J]. Ceram Int, 2014, 40(2): 2613-2617.

    [70] [70] LIU X J, MA Y H, CHEN M J, et al. Ba/Mg co-doped hydroxyapatite/ PLGA composites enhance X-ray imaging and bone defect regeneration[J]. J Mater Chem B, 2021, 9(33): 6691-6702.

    [71] [71] GEULI O, METOKI N, ZADA T, et al. Synthesis, coating, and drug-release of hydroxyapatite nanoparticles loaded with antibiotics[J]. J Mater Chem B, 2017, 5(38): 7819-7830.

    [72] [72] UDOMLUCK N, LEE H, HONG S, et al. Surface functionalization of dual growth factor on hydroxyapatite-coated nanofibers for bone tissue engineering[J]. Appl Surf Sci, 2020, 520: 146311.

    [73] [73] ULLAH I, ZHANG W C, YANG L, et al. Impact of structural features of Sr/Fe co-doped HAp on the osteoblast proliferation and osteogenic differentiation for its application as a bone substitute[J]. Mater Sci Eng C Mater Biol Appl, 2020, 110: 110633.

    [74] [74] JODATI H, GNER B, EVIS Z, et al. Synthesis and characterization of magnesium-lanthanum dual doped bioactive glasses[J]. Ceram Int, 2020, 46(8): 10503-10511.

    [75] [75] ERDEM U, TURKOZ M B. La3+ and F- dual-doped multifunctional hydroxyapatite nanoparticles: Synthesis and characterization[J]. Microsc Res Tech, 2021, 84(12): 3211-3220.

    [76] [76] ZHANG L L, LI H J, LI K Z, et al. Preparation and characterization of carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating for carbon/carbon composites[J]. Appl Surf Sci, 2014, 313: 85-92.

    Tools

    Get Citation

    Copy Citation Text

    ZHONG Zhenyu, XU Jun, SUN Zeyu, FAN Yibo, DU Yingying, ZHANG Shengmin. Dual-Ions Substituted Hydroxyapatite Materials and Their Application in Hard Tissue Engineering[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2566

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Mar. 20, 2023

    Accepted: --

    Published Online: Nov. 26, 2023

    The Author Email: Zhenyu ZHONG (zzysmallmail@hust.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics