Semiconductor Optoelectronics, Volume. 44, Issue 5, 756(2023)

Super-Resolution Image Style Transfer Combined with Reversible Network

LIN Zhen and ZHENG Qianying*
Author Affiliations
  • [in Chinese]
  • show less
    References(14)

    [1] [1] Jing Y, Yang Y, Feng Z, et al. Neural style transfer: A reviewJ. IEEE Trans. on Visualization and Computer Graphics, 2019, 26(11): 3365-3385.

    [2] [2] Li Y J, Fang C, Yang J M, et al. Universal style transfer via feature transformsJ/OL. ArXiv, 2017, 30: 1-112023818. https://arxiv.org/pdf/1705.08086.pdf.

    [3] [3] Huang X, Belongie S. Arbitrary style transfer in real-time with adaptive instance normalizationC// Proc. of the IEEE Inter. Conf. on Computer Vision, 2017: 1501-1510.

    [4] [4] Sheng L, Lin Z, Shao J, et al. Avatar-net: Multi-scale zero-shot style transfer by feature decorationC// Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2018: 8242-8250.

    [5] [5] Wang H, Li Y, Wang Y, et al. Collaborative distillation for ultra-resolution universal style transferC// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2020: 1860-1869.

    [6] [6] Jing Y, Liu X, Ding Y, et al. Dynamic instance normalization for arbitrary style transferC// Proc. of the AAAI Conf. on Artificial Intelligence, 2020: 4369-4376.

    [7] [7] An J, Li T, Lou J B, et al. Real-time universal style transfer on high-resolution images via zero-channel pruningJ. ArXiv, 2020, 2006: 090292023818. https://arxiv.org/pdf/2006.09029.pdf.

    [8] [8] Junginger A, Hanselmann M, Strauss T, et al. Unpaired high-resolution and scalable style transfer using generative adversarial networksJ. ArXiv, 2018, 1810: 057242023818. https://arxiv.org/pdf/1810.05724.pdf.

    [9] [9] Chen Z, Wang W H, Xie E Z, et al. Towards ultra-resolution neural style transfer via thumbnail instance normalizationC// Proc. of the AAAI Conf. on Artificial Intelligence, 2022: 393-400.

    [10] [10] Kingma D P, Dhariwal P. Glow: Generative flow with invertible 1×1 convolutionsJ. Advances in Neural Information Processing Systems, 2018, 31: 10236-10245.

    [11] [11] Hu J, Shen L, Sun G. Squeeze-and-excitation networksC// Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2018: 7132-7141.

    [12] [12] Jiang Y, Gong X, Liu D, et al. Enlightengan: Deep light enhancement without paired supervisionJ. IEEE Trans. on Image Processing, 2021, 30: 2340-2349.

    [13] [13] Li X, Liu S, Kautz J, et al. Learning linear transformations for fast image and video style transferC// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2019: 3809-3817.

    [14] [14] An J, Huang S, Song Y, et al. Artflow: Unbiased image style transfer via reversible neural flowsC// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2021: 862-871.

    Tools

    Get Citation

    Copy Citation Text

    LIN Zhen, ZHENG Qianying. Super-Resolution Image Style Transfer Combined with Reversible Network[J]. Semiconductor Optoelectronics, 2023, 44(5): 756

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 18, 2023

    Accepted: --

    Published Online: Nov. 20, 2023

    The Author Email: Qianying ZHENG (zhengqy@vip.sina.com)

    DOI:10.16818/j.issn1001-5868.2023071803

    Topics