Journal of the Chinese Ceramic Society, Volume. 51, Issue 3, 738(2023)
Pressure Sensing Properties of Porous Piezoelectric Ceramics
[1] [1] TADIGADAPA S, MATETI K. Piezoelectric MEMS sensors: state-of-the-art and perspectives[J]. Meas Sci Technol, 2009, 20(9): 092001.
[2] [2] KIM N I, CHEN J, WANG W, et al. Highly-sensitive skin-attachable eye-movement sensor using flexible nonhazardous piezoelectric thin film[J]. Adv Funct Mater, 2020, 31(8): 2008242.
[3] [3] ZHAO C, JIA C, ZHU Y, et al. An effective self-powered piezoelectric sensor for monitoring basketball skills[J]. Sensors (Basel), 2021, 21(15): 5144.
[4] [4] TIWARI D, BHATI B S, NAGPAL B, et al. An enhanced intelligent model: To protect marine IoT sensor environment using ensemble machine learning approach[J]. Ocean Eng, 2021, 242: 110180.
[5] [5] SHEN G. Recent advances of flexible sensors for biomedical applications[J]. Prog Nat Sci-Mater, 2021, 31(6): 872-882.
[6] [6] ROCHA H, SEMPRIMOSCHNIG C, NUNES J P. Sensors for process and structural health monitoring of aerospace composites: A review[J]. Eng Struct, 2021, 237: 112231.
[7] [7] RATO T J, NEVES D M G, ANTUNES A, et al. A systematic PAT soft sensor screening and development methodology applied to the prediction of free fatty acids in industrial biodiesel production[J]. Fuel, 2020, 282(2020): 118800.
[8] [8] YAMASHITA T, KOBAYASHI T. Smart table tennis racket using a rubber mounted ultrathin piezoelectric sensor array[J]. Sens Mater, 2021, 33(3): 1081-1089.
[9] [9] WANG S-H. The optimization design of thin piezoelectric force sensor and theoretical analysis of static loading estimation[J]. J Low Freq Noise V, 2019, 40(1): 577-587.
[10] [10] WANG L, WANG K, HU H, et al. Inkjet jet failures detection and droplets speed monitoring using piezo self-sensing[J]. Sens Actuat A Phys, 2020, 313: 112178.
[11] [11] SURMENEV R A, CHERNOZEM R V, PARIY I O, et al. A review on piezo- and pyroelectric responses of flexible nano- and micropatterned polymer surfaces for biomedical sensing and energy harvesting applications[J]. Nano Energy, 2021, 79: 105442.
[12] [12] ZHANG Z, WU P, ONG K P, et al. Electronic properties of A-site substituted lead zirconate titanate: Density functional calculations[J]. Phys Rev B, 2007, 76(12): 125102.
[13] [13] XIA X, JIANG X, CHEN C, et al. Effects of Cr2O3 doping on the microstructure and electrical properties of (Ba, Ca)(Zr, Ti)O3 lead-free ceramics[J]. Front Mater Sci, 2016, 10(2): 203-210.
[14] [14] WANG H, XIA S, WANG T, et al. Growth of oriented soft lead zirconate titanate single crystals via solid-state single crystal growth method[M]. 2021 IEEE ISAF. 2021: 1-3.
[15] [15] MCKINLEY I M, KANDILIAN R, PILON L. Waste heat energy harvesting using the Olsen cycle on 0. 945Pb(Zn1/3Nb2/3)O3-0. 055PbTiO3 single crystals[J]. Smart Mater Struct, 2012, 21(3): 035015.
[16] [16] BAKARIC T, ROJAC T, ABELLARD A P, et al. Effect of pore size and porosity on piezoelectric and acoustic properties of Pb(Zr0. 53Ti0. 47)O3 ceramics[J]. Adv Appl Ceram, 2016, 115(2): 66-71.
[17] [17] RINGGAARD E, LAUTZENHISER F, BIERREGAARD L M, et al. Development of porous piezoceramics for medical and sensor applications[J]. Materials (Basel), 2015, 8(12): 8877-8889.
[18] [18] WADA S, MASE Y, SHIMIZU S, et al. Piezoelectric properties of porous potassium niobate system ceramics[J]. Key Eng Mater, 2011, 485: 61-64.
[19] [19] BARTHELAT F. Biomimetics for next generation materials[J]. Philos Trans A Math Phys Eng Sci, 2007, 365(1861): 2907-2919.
[20] [20] MUNCH E, LAUNEY M E, ALSEM D H, et al. Tough, bio-inspired hybrid materials[J]. Science, 2008, 322(5907): 1516-1520.
[21] [21] ZHANG Y, ROSCOW J, LEWIS R, et al. Understanding the effect of porosity on the polarisation-field response of ferroelectric materials[J]. Acta Mater, 2018, 154(2018): 100-112.
[22] [22] ZHANG Y, XIE M, ROSCOW J, et al. Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications[J]. J Mater Chem A Mater, 2017, 5(14): 6569-6580.
[23] [23] ROSCOW J I, ZHANG Y, KRASNY M J, et al. Freeze cast porous barium titanate for enhanced piezoelectric energy harvesting[J]. J Phys D, 2018, 51(22): 225301.
[24] [24] SHROUT T R, ZHANG S J. Lead-free piezoelectric ceramics: Alternatives for PZT?[J]. J Electroceramics, 2007, 19(1): 113-126.
[25] [25] KANG M G, JUNG W S, KANG C Y, et al. Recent progress on PZT based piezoelectric energy harvesting technologies[J]. Actuators, 2016, 5(1): 5.
[26] [26] SATHYANARAYANA C N, RAJA S, RAGAVENDRA H M. procedure to use PZT sensors in vibration and load measurements[J]. Smart Mater Res, 2013, 2013(1): 1-9.
[27] [27] VARAPRASAD A M, KRISHNAN R. PZT-polymer composites for transducers of hydrophone systems[J]. Sens Actuator, 1988, 14(4): 361-368.
[28] [28] SHI Q, AN Z, TSUNG C K, et al. Ice-templating of core/shell microgel fibers through ‘bricks-and-mortar’ assembly[J]. Adv Mater, 2007, 19(24): 4539-4543.
[29] [29] ZHANG Y, ZHOU K, BAO Y, et al. Effects of rheological properties on ice-templated porous hydroxyapatite ceramics[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(1): 340-346.
[30] [30] DEVILLE S, SAIZ E, TOMSIA A P. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering[J]. Biomaterials, 2006, 27(32): 5480-5489.
[31] [31] BAO Y, HUANG B, ZHOU K, et al. Hierarchically structured lead-free barium strontium titanate for low-grade thermal energy harvesting[J]. Ceram Int, 2021, 47(13): 18761-18772.
[32] [32] ZHAO B, SHAO G, FAN B, et al. Facile synthesis and novel microwave electromagnetic properties of flower-like Ni structures by a solvothermal method[J]. J Mater Sci-Mater El, 2014, 25(8): 3614-3621.
[33] [33] BOWEN C R, ALMOND D P. Modelling the 'universal' dielectric response in heterogeneous materials using microstructural electrical networks[J]. Mater Sci Technol, 2006, 22(6): 719-724.
[34] [34] ZHANG Y, XIE M, ROSCOW J, et al. Dielectric and piezoelectric properties of porous lead-free 0.5Ba(Ca0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics[J]. Mater Res Bull, 2019, 112(2019): 426-431.
[35] [35] ZHANG H L, LI J F, ZHANG B P. Microstructure and electrical properties of porous PZT ceramics derived from different pore-forming agents[J]. Acta Mater, 2007, 55(1): 171-181.
[36] [36] NIE H C, FENG N B, CHEN X F, et al. Enhanced ferroelectric properties of intragranular-porous Pb(Zr0. 95Ti0. 05)O3 ceramic fabricated with carbon nanotubes[J]. J Am Ceram Soc, 2010, 93(3): 642-645.
[37] [37] ZHOU C, ZHANG J, SU W, et al. Large thickness-mode electromechanical coupling and good temperature stability of 1-3 PZT/epoxy composites[J]. J Mater Sci-Mater El, 2021, 32(4): 4705- 4712.
[38] [38] ZHANG Y, BAO Y, ZHANG D, et al. Porous PZT ceramics with aligned pore channels for energy harvesting applications[J]. J Am Ceram Soc, 2015, 98(10): 2980-2983.
[39] [39] ZENG T, DONG X L, CHEN H, et al. The effects of sintering behavior on piezoelectric properties of porous PZT ceramics for hydrophone application[J]. Mater Sci Eng, 2006, 131(1-3): 181-185.
[40] [40] ZENG T, DONG X, CHEN S, et al. Processing and piezoelectric properties of porous PZT ceramics[J]. Ceram Int, 2007, 33(3): 395-399.
[41] [41] LIU W, XU J, LV R, et al. Effects of sintering behavior on piezoelectric properties of porous PZT ceramics[J]. Ceram Int, 2014, 40(1): 2005- 2010.
[42] [42] ZHANG Y, XIE M, ROSCOW J, et al. Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications[J]. J Mater, 2017, 5: 6569-6580.
[43] [43] ZHANG M, SUN H, LIU X, et al. Structural design of PZT porous ceramics obtained via free-casting by ice-templating and performance exploration[J]. Mater Res Bull, 2020, 127(2020): 110862.
Get Citation
Copy Citation Text
YE Jingjing, ZHOU Kechao, YAN Mingyang, ZHAI Di, XU Qianqian, ZHANG Dou, ZHANG Yan. Pressure Sensing Properties of Porous Piezoelectric Ceramics[J]. Journal of the Chinese Ceramic Society, 2023, 51(3): 738
Category:
Received: Aug. 31, 2022
Accepted: --
Published Online: Apr. 10, 2023
The Author Email: Jingjing YE (203312078@csu.edu.cn)
CSTR:32186.14.