Chinese Journal of Quantum Electronics, Volume. 29, Issue 6, 729(2012)
An exact algebraic solution of Jaynes-Cummings model
[1] [1] Jaynes E T, Cummings F W. Comparison of quantum and semiclassical radiation theories with application to the beam maser [C]. Proc. IEEE, 1963, 51(1): 89-109.
[2] [2] Eberly J H, Narozhny N B, Sanchez-Mondragon J J. Periodic spontaneous collapse and revival in a simple quantum model [J]. Phys. Rev. Lett., 1980, 44(20): 1323-1326.
[3] [3] Yoo H I, Eberly J H. Dynamical theory of an atom with two or three levels interacting with quantized cavity fields [J]. Phys. Rep., 1985, 118(5): 239-337.
[4] [4] Kuklinski J R, Madajczyk J L. Strong squeezing in the Jaynes-Cummings model [J]. Phys. Rev. A, 1988, 37(8): 3175-3178.
[5] [5] Hillery M. Bounds on sub-Poissonian field statistics in the Jaynes-Cummings model [J]. Phys. Rev. A, 1987, 35(10): 4186-4191.
[6] [6] Fan Hongyi, et al. Pseudo-invariant eigen-operator for deriving energy-level gap for Jaynes-Cummings model [J]. Commun. Theor. Phys., 2006, 45(2): 255-258.
[9] [9] Bonatsos D, Doskaloyannis C, Lalazissis G A. Unification of Jaynes-Cummings models [J]. Phys. Rev. A, 1993, 47(4): 3448-3451.
[10] [10] Yu Sixia, Rauch H, Zhang Yongde. Algebraic approach to the Jaynes-Cummings models [J]. Phys. Rev. A, 1995, 52(4): 2585-2590.
[11] [11] Xu J B, Zou X B, Yu J H. Influence of intrinsic decoherence on nonclassical properties of the two-mode Raman coupled model [J]. Eur. Phys. J D, 2000, 10: 295-300.
[12] [12] Vadeiko I P, Miroshnichenko G P, Rybin A V, et al. Algebraic approach to the Tavis-Cummings problem [J]. Phys. Rev. A, 2003, 67(5): 053808.
Get Citation
Copy Citation Text
HE Rui. An exact algebraic solution of Jaynes-Cummings model[J]. Chinese Journal of Quantum Electronics, 2012, 29(6): 729
Category:
Received: Dec. 8, 2011
Accepted: --
Published Online: Nov. 29, 2012
The Author Email: Rui HE (jrql@yahoo.cn)