Journal of Terahertz Science and Electronic Information Technology , Volume. 21, Issue 4, 482(2023)

Architecture and key technologies of photonic-electronic converged intelligent terahertz systems

ZHANG Jian1,2, LI Mo1,2, DUAN Rui3,4, CHEN Feiliang1,2, YANG Fan1,2, and JIANG Hao1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(45)

    [1] [1] PREU S,DOHLER G H,MALZER S,et al. Tunable,continous-wave terahertz photo-mixer sources and applications[J]. Journal of Applied Physics, 2011,109(6):061301-1-56.

    [2] [2] WANG N, CAKMAKYAPAN S, LIN Y J, et al. Room-temperature heterodyne terahertz detection with quantum-level sensitivity[J]. Nature Astronomy, 2019,3(11):977-982.

    [3] [3] UMMETHALA S, HARTER T, KOEHNLE K, et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator[J]. Nature Photonics, 2019,13(8):519-524.

    [4] [4] HARTER T, FULLNER C, KEMAL J N, et al. Generalized Kramers-Kronig receiver for coherent terahertz communications[J]. Nature Photonics, 2020,14(10):601-606.

    [5] [5] ROTMAN R,TUR M,YARON L. True time delay in phased arrays[J]. Proceedings of the IEEE, 2016,104(3):504-518.

    [6] [6] ZHANG Jiao, ZHU Min, LEI Mingzheng, et al. Real-time demonstration of 103.125 Gbps fiber-THz-fiber 2×2 MIMO transparent transmission at 360~430 GHz based on photonics[J]. Optics Letters, 2022,47(5):1214-1217.

    [7] [7] MITCHELL. FiWiN5G-Fiber-Wireless integrated networks for 5th generation delivery[C]// International Conference on Transparent Optical Networks(ICTON). Trento,Italy:IEEE, 2016.

    [8] [8] DARPA. Generating RF with Photonic Oscillators for Low Noise(GRYPHON)[Z]. Microsystems Technology Office,USA, 2021.

    [9] [9] ZHU Z,ZHAO S,LI Y,et al. A novel scheme for high-quality 120 GHz optical millimeter-wave generation without optical filter[J]. Optics & Laser Technology, 2015,65(1):29-35.

    [10] [10] ZHU Z, ZHAO S,CHU X, et al. Optical generation of millimeter-wave signals via frequency 16-tupling without an optical filter[J]. Optics Communications, 2015(354):40-47.

    [11] [11] SCHNEIDER G J,MURAKOWSKI J A,SCHUETZ C A,et al. Radio frequency signal-generation system with over seven octaves of continuous tuning[J]. Nature Photonics, 2013,7(2):118-122.

    [12] [12] GROSS M C, CALLAHAN P T, CLARK T R, et al. Tunable millimeter-wave frequency synthesis up to 100 GHz by dual-wavelength Brillouin fiber laser[J]. Optics Express, 2010,18(13):13321-13330.

    [13] [13] LI Y,ROLLAND A,IWAMOTO K,et al. Low-noise millimeter-wave synthesis from a dual-wavelength fiber Brillouin cavity[J]. Optics Letters, 2019,44(2):359-362.

    [14] [14] LI J, YI X, LEE H, et al. Electro-optical frequency division and stable microwave synthesis[J]. Science, 2014, 345(6194): 309-313.

    [15] [15] TETSUMOTO T, NAGATSUMA T, FERMANN M E, et al. Optically referenced 300 GHz millimeter-wave oscillator[J]. Nature Photonics, 2021,15(7):516-522.

    [16] [16] KITTLAUS E A, ELIYAHU D, GANJI S, et al. A low-noise photonic heterodyne synthesizer and its application to millimeter-wave radar[J]. Nature Communications, 2021,12(1):4397.

    [17] [17] ZHOU P, ZHANG F, YE X, et al. Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser[J]. IEEE Photonics Journal, 2016,8(6):1-9.

    [18] [18] JIANG H,YAN L,PAN W,et al. Ultra-high speed RF filtering switch based on stimulated Brillouin scattering[J]. Optics Letters, 2018,43(2):279-282.

    [19] [19] LIU Q,FOK M P. Ultrafast and wideband microwave photonic frequency-hopping systems:a review[J]. Applied Sciences, 2020, 10(2):521.

    [20] [20] LI J,XUE X,XUE Z,et al. Reconfigurable radar signal generator based on phase-quantized photonic digital-to-analog conversion[J]. Optics Letters, 2022,47(10):2470-2473.

    [21] [21] ZHOU F, WANG X, YAN S, et al. Frequency-hopping microwave generation with a large time-bandwidth product[J]. IEEE Photonics Journal, 2018,10(3):1-9.

    [24] [24] STANZE D,GOBEL T,DIETZ R J B,et al. High-speed coherent CW terahertz spectrometer[J]. Electronics Letters, 2011,47(23): 1292-1294.

    [25] [25] LIEBERMEISTER L, NELLEN S, KOHLHAAS R B, et al. Optoelectronic frequency-modulated continuous-wave terahertz spectroscopy with 4 THz bandwidth[J]. Nature Communications, 2021,12(1):1-10.

    [26] [26] WANG N, JARRAHI M. High-precision millimeter-wave frequency determination through plasmonic photomixing[J]. Optics Express, 2020,28(17):24900-24907.

    [27] [27] HARTER T, UMMETHALA S, BLAICHER M, et al. Wireless THz link with optoelectronic transmitter and receiver[J]. Optica, 2019,6(8):1063-1070.

    [28] [28] MORALES A, NAZARIKOV G, ROMMEL S, et al. Highly tunable heterodyne sub-THz wireless link entirely based on optoelectronics[J]. IEEE Transactions on Terahertz Science and Technology, 2021,11(3):261-268.

    [29] [29] HORST Y, BLATTER T, KULMER L, et al. Transparent optical-THz-optical link at 240/192 Gbit/s over 5/115 m enabled by plasmonics[J]. Journal of Lightwave Technology, 2022,40(6):1690-1697.

    [32] [32] YU A,ZOU W,LI S,et al. A multi-channel multi-bit programmable photonic beamformer based on cascaded DWDM[J]. IEEE Photonics Journal, 2014,6(4):1-10.

    [33] [33] SHI N,LI M,DENG Y,et al. Experimental demonstration of a multi-target detection technique using an X-band optically steered phased array radar[J]. Optics Express, 2016,24(13):14438-14450.

    [34] [34] VISSCHER I,ROELOFFZEN C,TADDEI C,et al. Broadband true time delay microwave photonic beamformer for phased array antennas[C]// Proceedings of the 2019 13th European Conference on Antennas and Propagation(EuCAP). Krakow,Poland:IEEE, 2019.

    [35] [35] SNYDER B W, TEGEGNE Z G, NIJENHUIS N, et al. Assembly of mobile 5G transceiver based on photonic motherboard[J]. Proceeding of SPIE, 2022(12007):130-140.

    [36] [36] RIVERA-LAVADO A, GARCIA-MUNOZ L E, GENERALOV A, et al. Design of a dielectric rod waveguide antenna array for millimeter waves[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2017,38(1):33-46.

    [37] [37] RIVERA-LAVADO A, GARCIA-MUNOZ L E, LIOUBTCHENKO D, et al. Planar lens-based ultra-wideband dielectric rod waveguide antenna for tunable THz and sub-THz photomixer sources[J]. Journal of Infrared, Millimeter,and Terahertz Waves, 2019,40(8):838-855.

    [38] [38] KATO K. Photonics-assisted terahertz-wave beam steering and its application in secured wireless communication[J]. Photonics, 2022,9(9):1-11.

    [39] [39] CHE M, KONDO K, KANAYA H, et al. Arrayed photomixers for THz beam-combining and beam-steering[J]. Journal of Lightwave Technology, 2022,40(20):6657-6665.

    [40] [40] GAO W, LEE W S, YU X, et al. Characteristics of effective-medium-clad dielectric waveguides[J]. IEEE Transactions on Terahertz Science and Technology, 2020,11(1):28-41.

    [42] [42] NAGATSUMA T,ITO H,ISHIBASHI T. High-power RF photodiodes and their applications[J]. Laser & Photonics Reviews, 2009, 3(1-2):123-137.

    [43] [43] YANG S H,JARRAHI M. Navigating terahertz spectrum via photomixing[J]. Optics & Photonics News, 2020,31(7-8):36-43.

    [44] [44] YARDIMCI N T, JARRAHI M. Nanostructure-enhanced photoconductive terahertz emission and detection[J]. Small, 2018, 14 (44):1802437.

    [45] [45] CASTRO-CAMUS E,ALFARO M. Photoconductive devices for terahertz pulsed spectroscopy:a review[J]. Photonics Research, 2016,4(3):A36-A42.

    [46] [46] SEDDON J P,NATRELLA M,LIN X,et al. Photodiodes for terahertz applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021,28(2):1-12.

    [47] [47] NELLEN S, ISHIBASHI T, DENINGER A, et al. Experimental comparison of UTC-and PIN-photodiodes for continuous-wave terahertz generation[J]. Journal of Infrared Millimeter,and Terahertz Waves, 2020,41(4):343-354.

    [48] [48] DIAMANT G, HALAHMI E, KRONIK L, et al. Integrated circuits based on nanoscale vacuum phototubes[J]. Applied Physics Letters, 2008,92(26):262903.

    [49] [49] HAN J W,SEOL M L,MOON D I,et al. Nanoscale vacuum channel transistors fabricated on silicon carbide wafers[J]. Nature Electronics, 2019,2(9):405-411.

    [51] [51] CHEN F, LI M, ZHANG J, et al. High responsivity nano-air-channel photomixer for mmWave generation[C]// 24th IEEE International Vacuum Electronics Conference(IVEC 2023). Chengdu,China:IEEE, 2023.)

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Jian, LI Mo, DUAN Rui, CHEN Feiliang, YANG Fan, JIANG Hao. Architecture and key technologies of photonic-electronic converged intelligent terahertz systems[J]. Journal of Terahertz Science and Electronic Information Technology , 2023, 21(4): 482

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 7, 2023

    Accepted: --

    Published Online: Jan. 17, 2024

    The Author Email:

    DOI:10.11805/tkyda2023022

    Topics