Journal of the Chinese Ceramic Society, Volume. 52, Issue 1, 305(2024)

Research Progress on Perovskite Composite Oxide Catalysts

WANG Lingling1... SHAO Wei1,2, HAN Fei3, ZOU Junhua3, CHEN Wei1, HU Yin1, ZHANG Fen1, and SHI Zisheng12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(84)

    [1] [1] ZHENG Qian. Study on photoelectric and photocatalytic properties of copper/tin oxide semiconductor[D]. Yangzhou: Yangzhou University, 2021.

    [2] [2] HADJI F, OMARI M, MEBARKI M, et al. Zinc doping effect on the structural and electrochemical properties of LaCoO3 perovskite as a material for hybrid supercapacitor electrodes[J]. J Alloys Compd, 2023, 942: 169047.

    [3] [3] SOURI M, SALAR AMOLI H. Gas sensing mechanisms in ABO3 perovskite materials at room temperature: A review[J]. Mater Sci Semicond Process, 2023, 156: 107271.

    [4] [4] TAKALKAR G, BHOSALE R R. Solar thermocatalytic conversion of CO2 using PrxSr(1-x)MnO3-δ perovskites[J]. Fuel, 2019, 254: 115624.

    [5] [5] KUMAR A, KUMAR A, KRISHNAN V. Perovskite oxide based materials for energy and environment-oriented photocatalysis[J]. ACS Catal, 2020, 10(17): 10253-10315.

    [6] [6] ZHANG Qinqin, LI Zaixing, CHEN Xiaofei, et al. Fine Chem, 2022, 39(12): 2398-2408.

    [7] [7] LIU Huan, GAO Xinyu, BAI Jie, et al. Appl Chem Ind, 2021, 50(12): 3498-3503.

    [8] [8] WU J, YE R P, XU D J, et al. Emerging natural and tailored perovskite-type mixed oxides-based catalysts for CO2 conversions[J]. Front Chem, 2022, 10: 961355.

    [9] [9] GRABOWSKA E. Selected perovskite oxides: characterization, preparation and photocatalytic properties—A review[J]. Appl Catal B Environ, 2016, 186: 97-126.

    [10] [10] PE-A M A, FIERRO J L. Chemical structures and performance of perovskite oxides[J]. Chem Rev, 2001, 101(7): 1981-2017.

    [11] [11] KOBAYASHI M, KATSURAYA R, NARA T, et al. Phase behavior and crystal structure of perovskite-type rare earth complex oxides[J]. J Rare Earths, 2006, 24(6): 668-672.

    [12] [12] FU C J, MA Q A, GAO L M, et al. Recent advances in perovskite oxides electrocatalysts: Ordered perovskites, cations segregation and exsolution[J]. ChemCatChem, 2023, 15(11): e202300389.

    [13] [13] WEI Y, LENG Y Q, WANG R Y, et al. Peroxydisulfate activation by LaNiO3 nanoparticles with different morphologies for the degradation of organic pollutants[J]. Water Sci Technol, 2022, 85(1): 39-51.

    [14] [14] JANG I, KWON J, KIM C, et al. Boosted oxygen reduction reaction activity by ordering cations in the A-site of a perovskite catalyst[J]. ACS Sustainable Chem Eng, 2023, 11(12): 4623-4632.

    [15] [15] HARN Y W, LIANG S, LIU S L, et al. Tailoring electrocatalytic activity of in situ crafted perovskite oxide nanocrystals via size and dopant control[J]. Proc Natl Acad Sci USA, 2021, 118(25): e2014086118.

    [16] [16] ZHUANG Shuxin, LV Jianxian, LU Mi, et al. Prog Chem , 2015, 27(4): 436-447.

    [17] [17] REIS J V, PEREIRA T C P, TELES T H A, et al. Synthesis of CeNb3O9 perovskite by pechini method[J]. Mater Lett, 2018, 227: 261-263.

    [18] [18] WU Yuehui, LUO Laitao, LIU Wei. Chem Eng Oil Gas, 2007, 36(2): 101-105.

    [19] [19] XU Wenyang. Preparation and characterization of perovskite-like composite oxides by Pechini method[D]. Changsha: Central South University, 2010.

    [20] [20] CHENG Xinfeng, FU Yunzhi, ZHANG Xiaojiao. Inorg Chem Ind, 2010, 42(11): 1-3.

    [21] [21] WANG Dao, HU Guoqiang, LI Wan. J Chin Rare Earth Soc, 1986, 4(2): 31-33.

    [22] [22] WANG X, ZHANG Y N, ZHANG C, et al. Artificial intelligence-aided preparation of perovskite SrFexZr1-xO3-δ catalysts for ozonation degradation of organic pollutant concentrated water after membrane treatment[J]. Chemosphere, 2023, 318: 137825.

    [23] [23] ZHANG X H, ZHOU Y H, XIONG W M, et al. Ex-situ catalytic microwave pyrolysis of alkali lignin facilitates the production of monophenols and monoaromatics under the application of LaFe1-xCuxO3 perovskites[J]. Fuel, 2023, 335: 126987.

    [24] [24] LI S F, ZHENG J E, HU L A, et al. Sr-doped double perovskite La2CoMnO6 to promote the oxygen evolution reaction activity[J]. ChemElectroChem, 2022, 9(15): e202200475.

    [25] [25] BIBI I, MAQBOOL H, IQBAL S, et al. La1-xGdxCr1-yNiyO3 perovskite nanoparticles synthesis by micro-emulsion route: Dielectric, magnetic and photocatalytic properties evaluation[J]. Ceram Int, 2021, 47(4): 5822-5831.

    [26] [26] AAMIR M, BIBI I, ATA S, et al. Ferroelectric, dielectric, magnetic, structural and photocatalytic properties of Co and Fe doped LaCrO3 perovskite synthesized via micro-emulsion route[J]. Ceram Int, 2021, 47(12): 16696-16707.

    [27] [27] LIU X, WANG Y Q, ZANG M, et al. Effect of A-site element on the performance of three-dimensionally ordered macroporous manganese-based perovskite catalyst[J]. J Saudi Chem Soc, 2020, 24(5): 417-424.

    [28] [28] ZHAO M J, LIU J X, LIU J, et al. Fabrication of La1-xCaxFeO3 perovskite-type oxides with macro-mesoporous structure via a dual-template method for highly efficient soot combustion[J]. J Rare Earths, 2020, 38(4): 369-375.

    [29] [29] FRESNO F, GALDóN S, BARAWI M, et al. Selectivity in UV photocatalytic CO2 conversion over bare and silver-decorated niobium-tantalum perovskites[J]. Catal Today, 2021, 361: 85-93.

    [30] [30] OH J H, KWON B W, CHO J, et al. Importance of exsolution in transition-metal (Co, Rh, and Ir)-doped LaCrO3 perovskite catalysts for boosting dry reforming of CH4 using CO2 for hydrogen production[J]. Ind Eng Chem Res, 2019, 58(16): 6385-6393.

    [31] [31] HUANG C W, CHEN R A, CHEN W Y, et al. Manipulating and revealing the roles of La and Zr dopants into ZnTiO3 perovskite toward heterogeneous photocatalytic degradation of tetracycline under visible light irradiation[J]. Top Catal, 2023, 66(1-4): 34-40.

    [32] [32] RANJEKAR A M, YADAV G D. Hydrogen production by steam reforming of methanol by Cu-Zn/CeAlO3 perovskite[J]. New J Chem, 2023, 47(10): 4860-4870.

    [33] [33] ZHU Z Z, GUO W Y, ZHANG Y, et al. Research progress on methane conversion coupling photocatalysis and thermocatalysis[J]. Carbon Energy, 2021, 3(4): 519-540.

    [34] [34] WU P, JIN X J, QIU Y C, et al. Recent progress of thermocatalytic and photo/thermocatalytic oxidation for VOCs purification over manganese-based oxide catalysts[J]. Environ Sci Technol, 2021, 55(8): 4268-4286.

    [35] [35] DO J Y, PARK N K, SEO M W, et al. Effective thermocatalytic carbon dioxide methanation on Ca-inserted NiTiO3 perovskite[J]. Fuel, 2020, 271: 117624.

    [36] [36] TAKALKAR G, BHOSALE R R, ALMOMANI F, et al. Thermochemical splitting of CO2 using solution combustion synthesized lanthanum-strontium-manganese perovskites[J]. Fuel, 2021, 285: 119154.

    [37] [37] ZHANG J P, WANG Y N, TIAN J M, et al. Cu/LaFeO3 as an efficient and stable catalyst for CO2 reduction: Exploring synergistic effect between Cu and LaFeO3[J]. AlChE J, 2022, 68(6): e17640.

    [38] [38] YANG J, GUO Y B. Nanostructured perovskite oxides as promising substitutes of noble metals catalysts for catalytic combustion of methane[J]. Chin Chem Lett, 2018, 29(2): 252-260.

    [39] [39] BIAN Z F, WANG Z G, JIANG B, et al. A review on perovskite catalysts for reforming of methane to hydrogen production[J]. Renew Sustain Energy Rev, 2020, 134: 110291.

    [40] [40] SIM Y, KWON D, AN S N, et al. Catalytic behavior of ABO3 perovskites in the oxidative coupling of methane[J]. Mol Catal, 2020, 489: 110925.

    [41] [41] JIANG Jianjun, LIU Yihao, LI Qiang, et al. Environ Prot Chem Ind, 2022, 42(3): 318-324.

    [42] [42] ZHAO K, ZHANG R J, GAO Y F, et al. High syngas selectivity and near pure hydrogen production in perovskite oxygen carriers for chemical looping steam methane reforming[J]. Fuel Process Technol, 2022, 236: 107398.

    [43] [43] YIN X L, SHEN L H, WANG S, et al. Double adjustment of Co and Sr in LaMnO3+δ perovskite oxygen carriers for chemical looping steam methane reforming[J]. Appl Catal B Environ, 2022, 301: 120816.

    [44] [44] WANG S F, LIU J, ZHANG Y Y, et al. Pseudo core-shell LaCoO3@MgO perovskite oxides for high performance methane catalytic oxidation[J]. J Rare Earths, 2021, 39(1): 51-57.

    [45] [45] -ZBAY N, YARBAY -AHIN R Z. Effect of preparation method and B-side metal type on the physicochemical properties of LaBO3 perovskite catalyst and its catalytic behaviour in the biomass pyrolysis[J]. Biomass Convers Biorefin, 2022, 12(10): 4759-4772.

    [46] [46] QIN J N, LIN L H, WANG X C. A perovskite oxide LaCoO3 cocatalyst for efficient photocatalytic reduction of CO2 with visible light[J]. Chem Commun, 2018, 54(18): 2272-2275.

    [47] [47] MADI M, TAHIR M. Highly stable LaCoO3 perovskite supported g-C3N4 nanotextures with proficient charges migration for visible light CO2 photoreduction to CO and CH4[J]. Mater Sci Semicond Process, 2022, 142: 106517.

    [48] [48] ZHANG Zhenmin, JIA Jingwen, ZHANG Mengfan, et al. Nonferrous Met Sci Eng, 2020, 11(4): 14-22.

    [49] [49] ZHOU H, KOUHNAVARD M, JUNG S, et al. One-step aerosol synthesis of a double perovskite oxide (KBaTeBiO6) as a potential catalyst for CO2 photoreduction[J]. Nanoscale, 2021, 13(27): 11963-11975.

    [50] [50] JIANG Y H, FAN Y Y, LI S Y, et al. Photocatalytic methane conversion: insight into the mechanism of C(sp3)-H bond activation[J]. CCS Chem, 2023, 5(1): 30-54.

    [51] [51] YANG J, XIAO W, CHI X, et al. Solar-driven efficient methane catalytic oxidation over epitaxial ZnO/La0.8Sr0.2CoO3 heterojunctions[J]. Appl Catal B Environ, 2020, 265: 118469.

    [52] [52] TAN B Q, YE Y H, HUANG Z A, et al. Promotion of photocatalytic steam reforming of methane over Ag0/Ag+-SrTiO3[J]. Chin Chem Lett, 2020, 31(6): 1530-1534.

    [53] [53] CHEN W, HU Y, BA M W. Surface interaction between cubic phase NaNbO3 nanoflowers and Ru nanoparticles for enhancing visible-light driven photosensitized photocatalysis[J]. Appl Surf Sci, 2018, 435: 483-493.

    [54] [54] HU Y, CHEN W, WANG S Q, et al. Facile synthesis of NaNbxTa1-xO3 with abundant oxygen vacancies for photocatalytic hydrogen evolution without co-catalyst[J]. Int J Hydrog Energy, 2021, 46(58): 29994-30004.

    [55] [55] YANG Y Y, XIONG J H, SONG Y J, et al. Preparation of monolayer HSr2Nb3O10 nanosheets for photocatalytic hydrogen evolution[J]. Dalton Trans, 2019, 48(29): 11136-11141.

    [56] [56] XIONG J H, JING K Q, ZOU J H, et al. A hybrid of CdS/HCa2Nb3O10 ultrathin nanosheets for promoting photocatalytic hydrogen evolution[J]. Dalton Trans, 2017, 46(40): 13935-13942.

    [57] [57] WU H, HUANG Q X, SHI Y Y, et al. Electrocatalytic water splitting: Mechanism and electrocatalyst design[J]. Nano Res, 2023, 16(7): 9142-9157.

    [58] [58] LV L, LU R H, ZHU J X, et al. Coordinating the edge defects of bismuth with sulfur for enhanced CO2 electroreduction to formate[J]. Angew Chem Int Ed Engl, 2023, 62(25): e202303117.

    [59] [59] OCHEDI F O, LIU D J, YU J L, et al. Photocatalytic, electrocatalytic and photoelectrocatalytic conversion of carbon dioxide: A review[J]. Environ Chem Lett, 2021, 19(2): 941-967.

    [60] [60] CHANG B, MIN Z J, LIU N, et al. Electrocatalytic CO2 reduction to syngas[J]. Green Energy Environ, 2023: DOI: 10.1016/j.gee.2023.05.005.

    [61] [61] NITOPI S, BERTHEUSSEN E, SCOTT S B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chem Rev, 2019, 119(12): 7610-7672.

    [62] [62] WANG Y Y, WANG Z L, WANG D, et al. Revealing the doping effect of Cu2+ on SrSnO3 perovskite oxides for CO2 electroreduction[J]. ChemElectroChem, 2022, 9(17): e202200635.

    [63] [63] CHEN S H, SU Y Q, DENG P L, et al. Highly selective carbon dioxide electroreduction on structure-evolved copper perovskite oxide toward methane production[J]. ACS Catal, 2020, 10(8): 4640-4646.

    [64] [64] PENG Meilan, LI Zhishan, ZHANG Xiaoxin, et al. J Chin Ceram Soc, 2023, 51(4): 1015-1024.

    [65] [65] CHOI J, PARK S, HAN H, et al. Highly efficient CO2 electrolysis to CO on Ruddlesden-Popper perovskite oxide with in situ exsolved Fe nanoparticles[J]. J Mater Chem A, 2021, 9(13): 8740-8748.

    [66] [66] WANG S, QIAN B, WANG Z, et al. High catalytic activity of Fe-based perovskite fuel electrode for direct CO2 electroreduction in SOECs[J]. J Alloys Compd, 2021, 888: 161573.

    [67] [67] ZHANG L, ZHU J W, LI X, et al. Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis[J]. Interdiscip Mater, 2022, 1(1): 51-87.

    [68] [68] LEE S, KIM M, LEE K T, et al. CO2 electrolysis cells: enhancing electrochemical CO2 reduction using Ce(Mn, Fe)O2 with La(Sr)Cr(Mn)O3 cathode for high-temperature solid oxide electrolysis cells[J]. Adv Energy Mater, 2021, 11(24): 2100339.

    [69] [69] DENOYER L H, BENAVIDEZ A, GARZON F H, et al. Highly stable doped Barium niobate based electrocatalysts for effective electrochemical coupling of methane to ethylene[J]. Adv Materials Inter, 2022, 9(27): 2200796.

    [70] [70] KIM J, KIM Y J, FERREE M, et al. In-situ exsolution of bimetallic CoFe nanoparticles on (La, Sr)FeO3 perovskite: Its effect on electrocatalytic oxidative coupling of methane[J]. Appl Catal B Environ, 2023, 321: 122026.

    [71] [71] LIU D, ZHOU P F, BAI H Y, et al. Development of perovskite oxide-based electrocatalysts for oxygen evolution reaction[J]. Small, 2021, 17(43): e2101605.

    [72] [72] DA Y M, ZENG L R, WANG C Y, et al. A simple approach to tailor OER activity of SrxCo0.8Fe0.2O3 perovskite catalysts[J]. Electrochim Acta, 2019, 300: 85-92.

    [73] [73] WU C R, SUN Y, WEN X J, et al. Adjusting oxygen vacancies in perovskite LaCoO3 by electrochemical activation to enhance the hydrogen evolution reaction activity in alkaline condition[J]. J Energy Chem, 2023, 76: 226-232.

    [74] [74] JI D W, LIU C H, YAO Y H, et al. Cerium substitution in LaCoO3 perovskite oxide as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions[J]. Nanoscale, 2021, 13(22): 9952-9959.

    [75] [75] PHOON B L, LAI C W, PAN G T, et al. One-pot hydrothermal synthesis of strontium titanate nanoparticles photoelectrode using electrophoretic deposition for enhancing photoelectrochemical water splitting[J]. Ceram Int, 2018, 44(8): 9923-9933.

    [76] [76] LIU G Y, KARUTURI S K, CHEN H J, et al. Enhancement of the photoelectrochemical water splitting by perovskite BiFeO3 via interfacial engineering[J]. Sol Energy, 2020, 202: 198-203.

    [77] [77] MA R, SUN J, LI D H, et al. Review of synergistic photo-thermo-catalysis: Mechanisms, materials and applications[J]. Int J Hydrog Energy, 2020, 45(55): 30288-30324.

    [78] [78] ZHAO S H, WANG H B, LI Q, et al. Photothermal catalysis in CO2 reduction reaction: Principles, materials and applications[J]. N Carbon Mater, 2023, 38(2): 283-300.

    [79] [79] SUN M Y, ZHAO B H, CHEN F P, et al. Thermally-assisted photocatalytic CO2 reduction to fuels[J]. Chem Eng J, 2021, 408: 127280.

    [80] [80] BIAN H, LI D, WANG S Y, et al. 2D-C3N4 encapsulated perovskite nanocrystals for efficient photo-assisted thermocatalytic CO2 reduction[J]. Chem Sci, 2022, 13(5): 1335-1341.

    [81] [81] ZHANG M, GAO H, CHEN J, et al. Calcination engineering of urchin-like CoOx-CN catalysts to enhance photothermocatalytic oxidation of toluene via photo-/ thermo- coupling effect[J]. Appl Catal B Environ, 2022, 307: 121208.

    [82] [82] DU Z C, PETRU C, YANG X K, et al. Development of stable La0.9Ce0.1NiO3 perovskite catalyst for enhanced photothermochemical dry reforming of methane[J]. J CO2 Util, 2023, 67: 102317.

    [83] [83] WEI G H, ZHENG D M, XU L J, et al. Photothermal catalytic activity and mechanism of LaNixCo1-xO3 (0≤x≤1) perovskites for CO2 reduction to CH4 and CH3OH with H2O[J]. Mater Res Express, 2019, 6(8): 086221.

    [84] [84] ZHANG M M, WANG C H, WANG Y Y, et al. Tunable bismuth doping/loading endows NaTaO3 nanosheet highly selective photothermal reduction of CO2[J]. Nano Res, 2023, 16(2): 2142-2151.

    Tools

    Get Citation

    Copy Citation Text

    WANG Lingling, SHAO Wei, HAN Fei, ZOU Junhua, CHEN Wei, HU Yin, ZHANG Fen, SHI Zisheng. Research Progress on Perovskite Composite Oxide Catalysts[J]. Journal of the Chinese Ceramic Society, 2024, 52(1): 305

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 12, 2023

    Accepted: --

    Published Online: Jul. 30, 2024

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics