Acta Photonica Sinica, Volume. 48, Issue 7, 723001(2019)

Carrier Manipulation and Performance Enhancement of N-polar AlGaN-based LED with Grading Quantum Barriers

LU Yi1,2,3,4、*, YAN Jian-chang1,2,3, LI Xiao-hang4, GUO Ya-nan1,2,3, WU Zhuo-hui1,2,3, ZHANG Liang1,2,3, GU Wen1,2,3, WANG Jun-xi1,2,3, and LI Jin-min1,2,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(60)

    [1] [1] MOUSTAKAS T D, PAIELLA R. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz[J]. Reports on Progress in Physics, 2017, 80(10): 106501.

    [2] [2] PARK J-S, KIM J K, CHO J, et al. Review-group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency[J]. Ecs Journal of Solid State Science and Technology, 2017, 6(4): Q42-Q52.

    [3] [3] KHAN A, BALAKRISHNAN K, KATONA T. Ultraviolet light-emitting diodes based on group three nitrides[J]. Nature Photonics, 2008, 2(2): 77-84.

    [4] [4] KNEISSL M, KOLBE T, CHUA C, et al. Advances in group III-nitride-based deep UV light-emitting diode technology[J]. Semiconductor Science and Technology, 2011, 26(1): 014036.

    [5] [5] TAKANO T, MINO T, SAKAI J, et al. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency[J]. Applied Physics Express, 2017, 10(3): 031002.

    [6] [6] SZE S M, NG K K. Physics of semiconductor devices[M]. John Wiley & Sons, 2006.

    [7] [7] SHERVIN S, OH S K, PARK H J, et al. Flexible deep-ultraviolet light-emitting diodes for significant improvement of quantum efficiencies by external bending[J]. Journal of Physics D: Applied Physics, 2018, 51(10): 105105.

    [8] [8] KIM M H, SCHUBERT M F, DAI Q, et al. Origin of efficiency droop in GaN-based light-emitting diodes[J]. Applied Physics Letters, 2007, 91(18): 183507.

    [9] [9] KUO Y K, CHANG J Y, TSAI M C. Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer[J]. Optics Letters, 2010, 35(19): 3285-3287.

    [10] [10] HIRAYAMA H, TSUKADA Y, MAEDA T, et al. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer[J]. Applied Physics Express, 2010, 3(3): 031002.

    [11] [11] REN Z, LU Y, YAO H H, et al. III-nitride deep UV LED without electron blocking layer[J]. IEEE Photonics Journal, 2019, 11(2): 8200511.

    [12] [12] LI L, ZHANG Y, XU S, et al. On the hole injection for III-nitride based deep ultraviolet light-emitting diodes[J]. Materials, 2017, 10(10): 1221.

    [13] [13] ZHANG Z H, HUANG CHEN S W, ZHANG Y, et al. Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes[J]. Acs Photonics, 2017, 4(7): 1846-1850.

    [14] [14] ZHANG Y, YU L, LI K, et al. The improvement of deep-ultraviolet light-emitting diodes with gradually decreasing Al content in AlGaN electron blocking layers[J]. Superlattices and Microstructures, 2015, 82: 151-157.

    [15] [15] FAN X, SUN H, LI X, et al. Efficiency improvements in AlGaN-based deep ultraviolet light-emitting diodes using inverted-V-shaped graded Al composition electron blocking layer[J]. Superlattices and Microstructures, 2015, 88: 467-473.

    [16] [16] YIN Y A, WANG N, LI S, et al. Advantages of deep-UV AlGaN light-emitting diodes with an AlGaN/AlGaN superlattices electron blocking layer[J]. Applied Physics A, 2015, 119(1): 41-44.

    [17] [17] ZHANG Z H, CHEN S W H, CHU C, et al. Nearly efficiency-droop-free AlGaN-based ultraviolet light-emitting diodes with a specifically designed superlattice p-type electron blocking layer for high mg doping efficiency[J]. Nanoscale Research Letters, 2018, 13(1): 122.

    [18] [18] JANJUA B, NG T K, ALYAMANI A Y, et al. Enhancing carrier injection using graded superlattice electron blocking layer for UVB light-emitting diodes[J]. IEEE Photonics Journal, 2014, 6(6): 1-12.

    [19] [19] ZHANG X, SUN H, HUANG J, et al. Efficiency improvements in AlGaN-based deep-ultraviolet light-emitting diodes with graded superlattice last quantum barrier and without electron blocking layer[J]. Journal of Electronic Materials, 2019, 48(7): 460-466.

    [20] [20] MASUI H, KELLER S, FELLOWS N, et al. Luminescence characteristics of N-Polar GaN and InGaN films grown by metal organic chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2009, 48(7R): 071003.

    [21] [21] AKYOL F, NATH D N, GR E, et al. N-polar III-nitride green (540 nm) light emitting diode[J]. Japanese Journal of Applied Physics, 2011, 50(5R): 052101.

    [22] [22] FENG S W, LIAO P H, LEUNG B, et al. Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes[J]. Journal of Applied Physics, 2015, 118(4): 043104.

    [23] [23] AKYOL F, NATH D, KRISHNAMOORTHY S, et al. Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes[J]. Applied Physics Letters, 2012, 100(11): 111118.

    [24] [24] VERMA J, SIMON J, PROTASENKO V, et al. N-polar III-nitride quantum well light-emitting diodes with polarization-induced doping[J]. Applied Physics Letters, 2011, 99(17): 171104.

    [25] [25] WON D, WENG X, REDWING J M. Metalorganic chemical vapor deposition of N-polar GaN films on vicinal SiC substrates using indium surfactants[J]. Applied Physics Letters, 2012, 100(2): 021913.

    [26] [26] DENG G, ZHANG Y, YU Y, et al. Significantly improved surface morphology of N-polar GaN film grown on SiC substrate by the optimization of V/III ratio[J]. Applied Physics Letters, 2018, 112(15): 151607.

    [27] [27] KELLER S, FICHTENBAUM N, WU F, et al. Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition[J]. Journal of Applied Physics, 2007, 102(8): 083546.

    [28] [28] ZYWIETZ T K, NEUGEBAUER J, SCHEFFLER M. The adsorption of oxygen at GaN surfaces[J]. Applied Physics Letters, 1999, 74(12): 1695-1697.

    [29] [29] FICHTENBAUM N, MATES T, KELLER S, et al. Impurity incorporation in heteroepitaxial N-face and Ga-face GaN films grown by metalorganic chemical vapor deposition[J]. Journal of Crystal Growth, 2008, 310(6): 1124-1131.

    [30] [30] SIMON J, PROTASENKO V, LIAN C, et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures[J]. Science, 2010, 327(5961): 60-64.

    [31] [31] YAN L, ZHANG Y, HAN X, et al. Polarization-induced hole doping in N-polar III-nitride LED grown by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 2018, 112(18): 182104.

    [32] [32] BAO X, SUN P, LIU S, et al. Performance improvements for AlGaN-based deep ultraviolet light-emitting diodes with the p-type and thickened last quantum barrier[J]. IEEE Photonics Journal, 2015, 7(1): 1-10.

    [33] [33] CHEN S, LI Y, TIAN W, et al. Numerical analysis on the effects of multi-quantum last barriers in AlGaN-based ultraviolet light-emitting diodes[J]. Applied Physics A, 2015, 118(4): 1357-1363.

    [34] [34] CHANG J Y, CHANG H T, SHIH Y H, et al. Efficient carrier confinement in deep-ultraviolet light-emitting diodes with composition-graded configuration[J]. IEEE Transactions on Electron Devices, 2017, 64(12): 4980-4984.

    [35] [35] MANUAL A U S. Crosslight software inc[M]. Burnaby, BC, Canada, 2013.

    [36] [36] BERNARDINI F, FIORENTINI V, VANDERBILT D. Spontaneous polarization and piezoelectric constants of III-V nitrides[J]. Physical Review B, 1997, 56(16): R10024.

    [37] [37] FIORENTINI V, BERNARDINI F, AMBACHER O. Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures[J]. Applied Physics Letters, 2002, 80(7): 1204-1206.

    [38] [38] COUGHLAN C, SCHULZ S, CARO M A, et al. Band gap bowing and optical polarization switching in Al Ga N alloys[J]. Physica Status Solidi B, 2015, 252(5): 879-884.

    [39] [39] COLLAZO R, MITA S, XIE J, et al. Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications[J]. Physica Status Solidi C, 2011, 8(7-8): 2031-2033.

    [40] [40] NAKARMI M, KIM K, KHIZAR M, et al. Electrical and optical properties of Mg-doped Al 0.7 Ga 0.3 N alloys[J]. Applied Physics Letters, 2005, 86(9): 092108.

    [41] [41] TURIN V O. A modified transferred-electron high-field mobility model for GaN devices simulation[J]. Solid-State Electronics, 2005, 49(10): 1678-1682.

    [42] [42] CANALI C, MAJNI G, MINDER R, et al. Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature[J]. IEEE Transactions on Electron Devices, 1975, 22(11): 1045-1047.

    [43] [43] KINOSHITA T, OBATA T, YANAGI H, et al. High p-type conduction in high-Al content Mg-doped AlGaN[J]. Applied Physics Letters, 2013, 102(1): 012105.

    [44] [44] KOZODOY P, XING H, DENBAARS S P, et al. Heavy doping effects in Mg-doped GaN[J]. Journal of Applied Physics, 2000, 87(4): 1832-1835.

    [45] [45] PUNYA A, LAMBRECHT W R. Valence band effective-mass Hamiltonians for the group-III nitrides from quasiparticle self-consistent G W band structures[J]. Physical Review B, 2012, 85(19): 195147.

    [46] [46] YUN J, SHIM J I, HIRAYAMA H. Analysis of efficiency droop in 280-nm AlGaN multiple-quantum-well light-emitting diodes based on carrier rate equation[J]. Applied Physics Express, 2015, 8(2): 022104.

    [47] [47] PIPREK J, FARRELL R, DENBAARS S, et al. Effects of built-in polarization on InGaN-GaN vertical-cavity surface-emitting lasers[J]. IEEE Photonics Technology Letters, 2006, 18(1): 7-9.

    [48] [48] NAKARMI M, NEPAL N, LIN J, et al. Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys[J]. Applied Physics Letters, 2009, 94(9): 091903.

    [49] [49] VERZELLESI G, SAGUATTI D, MENEGHINI M, et al. Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies[J]. Journal of Applied Physics, 2013, 114(7): 10.

    [50] [50] ZAUNER A, WEYHER J, PLOMP M, et al. Homo-epitaxial GaN growth on exact and misoriented single crystals: suppression of hillock formation[J]. Journal of Crystal Growth, 2000, 210(4): 435-443.

    [51] [51] ZAUNER A, ARET E, VAN ENCKEVORT W, et al. Homo-epitaxial growth on the N-face of GaN single crystals: the influence of the misorientation on the surface morphology[J]. Journal of Crystal Growth, 2002, 240(1-2): 14-21.

    [52] [52] TAKEUCHI M, SHIMIZU H, KAJITANI R, et al. Al-and N-polar AlN layers grown on c-plane sapphire substrates by modified flow-modulation MOCVD[J]. Journal of Crystal Growth, 2007, 305(2): 360-365.

    [53] [53] WU Y, HANLON A, KAEDING J, et al. Effect of nitridation on polarity, microstructure, and morphology of AlN films[J]. Applied Physics Letters, 2004, 84(6): 912-914.

    [54] [54] SONG J, YUAN G, XIONG K, et al. Epitaxial lateral overgrowth of nitrogen-polar (0001) GaN by metalorganic chemical vapor deposition[J]. Crystal Growth & Design, 2014, 14(5): 2510-2515.

    [55] [55] STOLYARCHUK N, MARKURT T, COURVILLE A, et al. Impact of sapphire nitridation on formation of Al-polar inversion domains in N-polar AlN epitaxial layers[J]. Journal of Applied Physics, 2017, 122(15): 155303.

    [56] [56] KUELLER V, KNAUER A, BRUNNER F, et al. Investigation of inversion domain formation in AlN grown on sapphire by MOVPE[J]. Physica Status Solidi C, 2012, 9(3-4): 496-498.

    [57] [57] KIM H, RYOU J H, DUPUIS R D, et al. Electrical characteristics of contacts to thin film N-polar n-type GaN[J]. Applied Physics Letters, 2008, 93(19): 192106.

    [58] [58] DASGUPTA S, NIDH I, BROWN D F, et al. Ultralow nonalloyed ohmic contact resistance to self aligned N-polar GaN high electron mobility transistors by In (Ga) N regrowth[J]. Applied Physics Letters, 2010, 96(14): 143504.

    [59] [59] LIU J, FENG F, ZHOU Y, et al. Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate[J]. Applied Physics Letters, 2011, 99(11): 111112.

    [60] [60] PTAK A, HOLBERT L, TING L, et al. Controlled oxygen doping of GaN using plasma assisted molecular-beam epitaxy[J]. Applied Physics Letters, 2001, 79(17): 2740-2742.

    Tools

    Get Citation

    Copy Citation Text

    LU Yi, YAN Jian-chang, LI Xiao-hang, GUO Ya-nan, WU Zhuo-hui, ZHANG Liang, GU Wen, WANG Jun-xi, LI Jin-min. Carrier Manipulation and Performance Enhancement of N-polar AlGaN-based LED with Grading Quantum Barriers[J]. Acta Photonica Sinica, 2019, 48(7): 723001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Apr. 2, 2019

    Accepted: --

    Published Online: Jul. 31, 2019

    The Author Email: Yi LU (luyi@semi.ac.cn)

    DOI:10.3788/gzxb20194807.0723001

    Topics