Optics and Precision Engineering, Volume. 28, Issue 4, 771(2020)
Wide-temperature-range and low-loss piezoelectric and friction functional materials of ultrasonic motor
[2] [2] ZHANG Q M, WANG H, KIM N, et al.. Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics[J]. Journal of Applied Physics, 1994, 75(1): 454-459.
ZHANG Q M, WANG H, KIM N, et al.. Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics[J]. Journal of Applied Physics, 1994, 75(1): 454-459.
[3] [3] ZHANG X L, CHEN Z X, CROSS L E, et al.. Dielectric and piezoelectric properties of modified lead titanate zirconate ceramics from 4.2 to 300 K[J]. Journal of Materials Science, 1983, 18(4): 968-972.
ZHANG X L, CHEN Z X, CROSS L E, et al.. Dielectric and piezoelectric properties of modified lead titanate zirconate ceramics from 4.2 to 300 K[J]. Journal of Materials Science, 1983, 18(4): 968-972.
[4] [4] XIE J, TIAN SH, XU Y L, et al.. Study of the influence of Sn on PMN-PZT low-temperature stability and piezoelectric properties[J]. Journal of Functional Materials, 2000, 31(1): 77-78, 81.(in Chinese)
XIE J, TIAN SH, XU Y L, et al.. Study of the influence of Sn on PMN-PZT low-temperature stability and piezoelectric properties[J]. Journal of Functional Materials, 2000, 31(1): 77-78, 81.(in Chinese)
[5] [5] WANG J P, ZHOU H P, JIN J M, et al.. Friction behavior on contact interface of linear ultrasonic motor with hard contact materials[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2015, 32(2): 174-179.
WANG J P, ZHOU H P, JIN J M, et al.. Friction behavior on contact interface of linear ultrasonic motor with hard contact materials[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2015, 32(2): 174-179.
[6] [6] QIU W, MIZUNO Y, NAKAMURA K. Tribological performance of ceramics in lubricated ultrasonic motors[J]. Wear, 2016: 188-195.
QIU W, MIZUNO Y, NAKAMURA K. Tribological performance of ceramics in lubricated ultrasonic motors[J]. Wear, 2016: 188-195.
[7] [7] LI S, SHAO M C, DUAN C J, et al.. Tribological behavior prediction of friction materials for ultrasonic motors using Monte Carlo-based artificial neural network[J]. Journal of Applied Polymer Science, 2019, 136(10): 47157.
LI S, SHAO M C, DUAN C J, et al.. Tribological behavior prediction of friction materials for ultrasonic motors using Monte Carlo-based artificial neural network[J]. Journal of Applied Polymer Science, 2019, 136(10): 47157.
[8] [8] LI S, ZHANG N, YANG Z H, et al.. Tailoring friction interface with surface texture for high-performance ultrasonic motor friction materials[J]. Tribology International, 2019, 136: 412-420.
LI S, ZHANG N, YANG Z H, et al.. Tailoring friction interface with surface texture for high-performance ultrasonic motor friction materials[J]. Tribology International, 2019, 136: 412-420.
[9] [9] QU J J, ZHANG Y H, TIAN X, et al.. Wear behavior of filled polymers for ultrasonic motor in vacuum environments[J]. Wear, 2015, 322: 108-116.
QU J J, ZHANG Y H, TIAN X, et al.. Wear behavior of filled polymers for ultrasonic motor in vacuum environments[J]. Wear, 2015, 322: 108-116.
[10] [10] GONG W, CHU X CH, LI L T. Research on friction material for traveling wave ultrasonic motor[J]. Piezoelectrics & Acoustooptics, 2003, 25(4): 305-307.(in Chinese)
GONG W, CHU X CH, LI L T. Research on friction material for traveling wave ultrasonic motor[J]. Piezoelectrics & Acoustooptics, 2003, 25(4): 305-307.(in Chinese)
[11] [11] FAN Y, DING Q J, ZHAO CH SH. Research on PTFE-based friction materials of ultrasonic motor[J]. Lubrication Engineering, 2011, 36(7): 36-39.(in Chinese)
FAN Y, DING Q J, ZHAO CH SH. Research on PTFE-based friction materials of ultrasonic motor[J]. Lubrication Engineering, 2011, 36(7): 36-39.(in Chinese)
[12] [12] DING Q J, YAO ZH Y, ZHENG W, et al.. Experimental study of friction material adhere to the stator of the traveling wave type rotary ultrasonic motor[J]. Tribology, 2007, 27(6): 578-582.(in Chinese)
DING Q J, YAO ZH Y, ZHENG W, et al.. Experimental study of friction material adhere to the stator of the traveling wave type rotary ultrasonic motor[J]. Tribology, 2007, 27(6): 578-582.(in Chinese)
[13] [13] ZHAO G, WU C H, ZHANG L C, et al.. Friction and wear behavior of PI and PTFE composites for ultrasonic motors[J]. Polymers for Advanced Technologies, 2018, 29(5): 1487-1496.
ZHAO G, WU C H, ZHANG L C, et al.. Friction and wear behavior of PI and PTFE composites for ultrasonic motors[J]. Polymers for Advanced Technologies, 2018, 29(5): 1487-1496.
[14] [14] LIU X L, SONG J F, CHEN H C, et al.. Enhanced transfer efficiency of ultrasonic motors with polyimide based frictional materials and surface texture[J]. Sensors and Actuators A-physical, 2019, 295: 671-677.
LIU X L, SONG J F, CHEN H C, et al.. Enhanced transfer efficiency of ultrasonic motors with polyimide based frictional materials and surface texture[J]. Sensors and Actuators A-physical, 2019, 295: 671-677.
[15] [15] ZHAO CH SH. Ultrasonic Motors Technologies and Applications[M]. Beijing: Science Press, 2007. (in Chinese)
ZHAO CH SH. Ultrasonic Motors Technologies and Applications[M]. Beijing: Science Press, 2007. (in Chinese)
[16] [16] SONG F Z, YANG Z H, ZHAO G, et al.. Tribological performance of filled PTFE-based friction material for ultrasonic motor under different temperature and vacuum degrees[J]. Journal of Applied Polymer Science, 2017, 134(39): 45358.
SONG F Z, YANG Z H, ZHAO G, et al.. Tribological performance of filled PTFE-based friction material for ultrasonic motor under different temperature and vacuum degrees[J]. Journal of Applied Polymer Science, 2017, 134(39): 45358.
[17] [17] WANG Q H, ZHENG F, WANG T M. Tribological properties of polymers PI, PTFE and PEEK at cryogenic temperature in vacuum[J]. Cryogenics, 2016, 75: 19-25.
WANG Q H, ZHENG F, WANG T M. Tribological properties of polymers PI, PTFE and PEEK at cryogenic temperature in vacuum[J]. Cryogenics, 2016, 75: 19-25.
Get Citation
Copy Citation Text
LIANG Rui-hong, ZHAO Gai, CHEN Ning, LI Song, LU Xiao-rong, CHEN Zheng-ran. Wide-temperature-range and low-loss piezoelectric and friction functional materials of ultrasonic motor[J]. Optics and Precision Engineering, 2020, 28(4): 771
Category:
Received: Mar. 4, 2020
Accepted: --
Published Online: Jul. 2, 2020
The Author Email: Rui-hong LIANG (liangruihong@mail.sic.ac.cn)