Journal of the Chinese Ceramic Society, Volume. 50, Issue 10, 2754(2022)
Construction of Expansion Molybdenite/Carbon Composites Material and Its Lithium Storage Properties
[1] [1] PENG C L, SHI M M, LI F, et al. Construction of 1T@2H MoS2 heterostructures in situ from natural molybdenite with enhanced electrochemical performance for lithium-ion batteries[J]. RSC Adv, 2021, 11(53): 3348-33489.
[2] [2] LI S J, TANG H H, GE P, et al. Electrochemical investigation of natural ore molybdenite (MoS2) as a first-hand anode for lithium storages[J]. ACS Appl Mater Interfaces, 2018, 10(7): 6378-6389.
[3] [3] JIANG F, LI S J, GE P, et al. Size-tunable natural mineral-molybdenite for lithium-ion batteries toward: Enhanced storage capacity and quicken ions transferring[J]. Front Chem, 2018, 6: 389.
[5] [5] WANG L L, ZHANG Q F, ZHU J Y, et al. Nature of extra capacity in MoS2 electrodes: molybdenum atoms accommodate with lithium[J]. Energy Stor Mater, 2018, 16, 37-45.
[6] [6] ZHOU Y, LIU Y, ZHAO W X, et al. Growth of vertically aligned MoS2 nanosheets on Ti substrate through self-supported bonding interface for high-performance lithium-ion batteries: A general approach[J]. J Mater Chem A, 2016, 4(16): 5932-5941.
[7] [7] WANG H Y, JIANG H, HU Y J, et al. 2D MoS2/polyaniline heterostructures with enlarged interlayer spacing enhancing sodium-ion for superior lithium and sodium storage[J]. J Mater Chem A, 2017, 5(11): 53833-5389.
[9] [9] LI S C, LIU P, HUANG X B, et al. Reviving the bulky MoS2 as advanced anode for lithium ion batteries[J]. J Mater Chem A, 2019, 7(18): 10988-10997.
[10] [10] LI Z Y, OTTMANN A, ZHANG T, et al. Preparation of hierarchical C@MoS2@C sandwiched hollow spheres for lithium ion batteries[J]. J Mater Chem A, 2017, 5(8): 3987-3994.
[11] [11] WANG H Y, WANG B Y, WANG D, et al. Facile synthesis of hierarchical worm-like MoS2 structures assembled with nanosheets as anode for lithium ion batteries[J]. RSC Adv, 2015, 5(71): 58084-58090.
[12] [12] ZHANG C Z, HAN F, WANG F, et al. Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage[J]. Energy Storage Mater, 2020, 24: 208-219.
[13] [13] ZHOU Y, LIU Y, ZHAO W X, et al. Rational design and synthesis of 3D MoS2 hierarchitecture with tunable nanosheets and 2H/1T phase within graphene for superior lithium storage[J]. Electrochim Acta, 2016, 211: 1048-1055.
[14] [14] YE W, WU F F, SHI N X, et al. Metal-semiconductor phase twinned hierarchical MoS2 nanowires with expanded interlayers for sodium-ion batteries with ultralong cycle life[J]. Small, 2019, 16(3): 1906607.
[15] [15] ZUO X X, CHANG K, ZHAO J, et al. Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material[J]. J Mater Chem A, 2015, 4(1): 51-58.
[16] [16] BAI J, ZHAO B C, ZHOU J F, et al. Glucose-induced synthesis of 1T-MoS2/C hybrid for high-rate lithium-ion batteries[J]. Small, 2019, 15(14): 1805420.
[17] [17] LEI Z D, XU L Q, JIAO Y L, et al. Strong coupling of MoS2 nanosheets and nitrogen doped graphene for high-performance pseudocapacitance lithium storage[J]. Small, 2018, 14(25): 1704410.
[18] [18] GU C P, GUAN W M, CUI Y W, et al. Preparation of three-dimensional nanosheet-based molybdenum disulfide nanotubes as anode materials for lithium storage[J]. J Mater Chem A, 2016, 4(43): 17000-17008.
[19] [19] LI X Y, Li K K, ZHU S C, et al. Fiber-in-tube design of Co9S8-carbon/Co9S8: enabling efficient sodium storage[J]. Angew Chem, 2019, 131(19): 6305-6309.
[20] [20] FANG Y J, LUAN D Y, CHEN Y, et al. Rationally designed three-layered Cu2S@Carbon@MoS2 hierarchical nanoboxes for efficient sodium storage[J]. Angew Chem Int Ed, 2020, 59(18): 7178-7183.
[21] [21] LI Z Y, OTTMANN A, QING S, et al. Hierarchical MoS2-carbon porous nanorods towards atomic interfacial engineering for high-performance lithium storage[J]. J Mater Chem A, 2019, 7(13): 7553-7564.
Get Citation
Copy Citation Text
PENG Chenglong, SHI Mingming, LIU qian, LIU Huasheng, LI Zhen. Construction of Expansion Molybdenite/Carbon Composites Material and Its Lithium Storage Properties[J]. Journal of the Chinese Ceramic Society, 2022, 50(10): 2754
Special Issue:
Received: Jan. 26, 2022
Accepted: --
Published Online: Jan. 22, 2023
The Author Email: Chenglong PENG (clpeng@cug.edu.cn)