Journal of the Chinese Ceramic Society, Volume. 50, Issue 6, 1762(2022)

Research Progress on Anti-Spalling of Refractory Castables

WANG Yulong*... WANG Zhoufu, WANG Xitang, LIU Hao, MA Yan and JIANG Pengcheng |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(43)

    [6] [6] OZAWA M, UCHIDA S, KAMADA T, et al. Study of mechanisms of explosive spalling in high-strength concrete at high temperatures using acoustic emission[J]. Constr Build Mater, 2012, 37: 621-628.

    [7] [7] MOREIRA M H, PONT S D, AUSAS R F, et al. Main trends on the simulation of the drying of refractory castables - review[J]. Ceram Int, 2021, 47(20): 28086-28105.

    [8] [8] STELZNER L, POWIERZA B, OESCH T, et al. Thermally-induced moisture transport in high-performance concrete studied by X-ray-CT and 1H-NMR[J]. Constr Build Mater, 2019, 224: 600-609.

    [13] [13] LUZ A P, MOREIRA M H, BRAULIO M A L, Drying behavior of dense refractory ceramic castables. part 1-general aspects and experimental techniques used to assess water removal[J]. Ceram Int, 2021, 47(16): 22246-22268.

    [14] [14] LI N, WANG X Y, MU Y D, et al. Mechanical property and phase evolution of the hydrates of CAC-bonded alumina castables during drying at 110 ℃[J]. Constr Build Mater, 2021, 266: 120692.

    [15] [15] SHAN J B, LI Y W, LIAO N, et al. Critical roles of synthetic zeolite on the properties of ultra-low cement-bonded Al2O3-SiC-C castables[J]. J Eur Ceram Soc, 2020, 40(15): 6132-6140.

    [16] [16] CHENG B J, YAO C, XIONG J, et al. Effects of sodium hexametaphosphate addition on the dispersion and hydration of pure calcium aluminate cement[J]. Materials, 2020, 13(22): 5229.

    [17] [17] DOS SANTOS T, PEREIRA C I, GON?ALVES R, et al. Gluconate action in the hydration of calcium aluminate cements: theoretical study, processing of aqueous suspensions and hydration reactivation[J]. J Eur Ceram Soc, 2019, 39(8): 2748-2759.

    [18] [18] WANG Y L, LI X C, ZHU B Q, et al. Microstructure evolution during the heating process and its effect on the elastic properties of CAC-bonded alumina castables[J]. Ceram Int, 2016, 42(9): 11355-11362.

    [19] [19] ZHANG J, LI N, ZHOU W Y, et al. Microstructure evolution of hydration products and strength change of hydratable alumina-bonded castables below 1 250 ℃[J]. J Am Ceram Soc, 2021, 104(3): 1448- 1454.

    [20] [20] SALOM?O R, KAWAMURA M A, SOUZA A D V, et al. Hydratable alumina-bonded suspensions: evolution of microstructure and physical properties during first heating[J]. Inter ceram, 2017, 66(7): 28-37.

    [21] [21] XU N N, LI Y B, LI S J, et al. Hydration mechanism and sintering characteristics of hydratable alumina with microsilica addition[J]. Ceram Int, 2019, 45(11): 13780-13786.

    [22] [22] CARDOSO F A, INNOCENTINI M D M, MIRANDA M F S, et al. Drying behavior of hydratable alumina-bonded refractory castables[J]. J Eur Ceram Soc, 2004, 24(5): 797-802.

    [23] [23] PINTO D G, SILVA A P, SEGADAES A M, et al. Thermomechanical evaluation of self- flowing refractory castables with and without the addition of aluminate cement[J]. Ceram Int, 2012, 38(4): 3483-3488.

    [24] [24] CHEN D, GU H Z, HUANG A, et al. Enhancement of bonding network for silica sol bonded SiC castables by reactive micropowder[J]. Ceram Int, 2017, 43(12): 8850-8857.

    [26] [26] AN J C, WANG Y P, JIA Q L, et al. Microstructure and reactivity evolution of colloidal silica binder in different systems at elevated temperatures[J]. Ceram Int, 2020, 46(12): 20129- 20137.

    [27] [27] NOURI-KHEZRABAD M, LUZ A P, SALVINI V R, et al. Developing nano-bonded refractory castables with enhanced green mechanical properties[J]. Ceram Int, 2015, 41(2): 3051-3057.

    [28] [28] NOURI-KHEZRABAD M, BRAULIO M A L, PANDOLFELLI V C, et al. Nano-bonded refractory castables[J]. Ceram Int, 2013, 39(4): 3479-3497.

    [29] [29] GORDEEVA G G, KOZLOVSKII A G, ASKINAZI Y V, et al. Unmolded refractories with a silica sol binder[J]. Refract Ind Ceram, 2010, 51(4): 272-273.

    [30] [30] PINTO V S, FINI D S, MIGUEL V C, et al. Fast drying of high-alumina MgO-bonded refractory castables[J]. Ceram Int, 2020, 46(8): 11137-11148.

    [31] [31] LUZ A P, CONSONI L B, PAGLIOSA C, et al. MgO fumes as a potential binder for in situ spinel containing refractory castables[J]. Ceram Int, 2018, 44(13): 15453-15463.

    [32] [32] DOS SANTOS T, PINOLA F G, LUZ A P, et al. Al2O3-MgO refractory castables with enhanced explosion resistance due to in situ formation of phases with lamellar structure[J]. Ceram Int, 2018, 44(7): 8048-8056.

    [33] [33] SANTOS T, LUZ A P, PAGLIOSA C, et al. Mg(OH)2 nucleation and growth parameters applicable for the development of MgO-based refractory castables[J]. J Am Ceram Soc, 2016, 99(2): 461-469.

    [34] [34] SILVA W M, ANEZIRIS C G, BRITO M A M. Effect of alumina and silica on the hydration behavior of magnesia-based refractory castables[J]. J Am Ceram Soc, 2011, 94(12): 4218- 4225.

    [35] [35] SOUZA T M, BRAULIO M A L, LUZ A P, et al. Systemic analysis of MgO hydration effects on alumina-magnesia refractory castables[J]. Ceram Int, 2012, 38(5): 3969-3976.

    [36] [36] SOUZA T M, LUZ A P, BRAULIO M A L, et al. Acetic acid role on magnesia hydration for cement-free refractory castables[J]. J Am Ceram Soc, 2014, 97(4): 1233-1241.

    [37] [37] MIGUEL V C, FINI D S, PINTO V S, et al. Crack-free caustic magnesia-bonded refractory castables[J]. Ceram Int, 2021, 47(12): 17255-17261.

    [38] [38] FINI D S, MIGUEL V C, PINTO V S, et al. Aluminum lactate role in improving hydration and drying behavior of MgO-bonded refractory castables[J]. Ceram Int, 2020, 46(10): 17093-17102.

    [41] [41] LUZ A P, MOREIRA M H, W?HRMEYER C, et al. Drying behavior optimization of dense refractory castables by adding a permeability enhancing active compound[J]. Ceram Int, 2019, 45(7): 9048-9060.

    [42] [42] LI Y C, ZHAO H Z, ZHANG H, et al. Enhancement and explosion-proof mechanism of aluminum fiber addition in Al2O3-SiC-C castables for iron runner[J]. Ceram Int, 2019, 45(17): 22723-22730.

    [44] [44] SALOM?O R, PANDOLFELLI V C. Anti-spalling fibers for refractory castables: a potential application for recycling drinking straws[J]. Ceram Int, 2020, 46(9): 14262-14268.

    [45] [45] BEZERRA B P, LUZ A P, PANDOLFELLI V C. Novel drying additives and their evaluation for self-flowing refractory castables[J]. Ceram Int, 2020, 46(3): 3209-3217.

    [46] [46] CZECHOWSKI J, MAJCHROWICZ I. Microwave and conventional treatment of low-cement high-alumina castables with different water to cement ratios; part I. drying[J]. Ceram Int, 2018, 44(1): 65-70.

    [47] [47] CZECHOWSKI J, MAJCHROWICZ I. Microwave and conventional treatment of low-cement high-alumina castables with different water to cement ratios; part II. dehydration[J]. Ceram Int, 2018, 44(9): 10335-10339.

    [49] [49] DAUTI D, TENGATTINI A, PONT S D, et al. Some observations on testing conditions of high-temperature experiments on concrete: an insight from neutron tomography[J]. Transport Porous Med, 2020, 132(2): 299-310.

    [50] [50] FEY K G, RIEHL I, WULF R, et al. Experimental and numerical investigation of the first heat-up of refractory concrete[J]. Int J Therm Sci, 2016, 100: 108-125.

    [51] [51] OUMMADI S, NAIT-ALI B, ALZINA A, et al. Distribution of water in ceramic green bodies during drying[J]. J Eur Ceram Soc, 2019, 39(10): 3164-3172.

    [52] [52] BARAKAT A J, PEL L, KRAUSE O, et al. Direct observation of the moisture distribution in calcium aluminate cement and hydratable alumina-bonded castables during first-drying: an NMR study[J]. J Am Ceram Soc, 2020, 103(3): 2101-2113.

    [53] [53] POWIERZA B, STELZNER L, OESCH T, et al. Water migration in one-side heated concrete: 4D in-situ CT monitoring of the moisture-clog-effect[J]. J Nondestruct Eval, 2019, 38(1): 15.

    [54] [54] TOROPOVS N, LO MONTE F, WYRZYKOWSKI M, et al. Real-time measurements of temperature, pressure and moisture profiles in high-performance concrete exposed to high temperatures during neutron radiography imaging[J]. Cem Concr Res, 2015, 68: 166-173.

    [55] [55] DAUTI D, TENGATTINI A, DAL PONT S, et al. Analysis of moisture migration in concrete at high temperature through in-situ neutron tomography[J]. Cem Concr Res, 2018, 111: 41-55.

    [56] [56] MOREIRA M H, AUSAS R F, DAL PONT S, et al. Towards a single-phase mixed formulation of refractory castables and structural concrete at high temperatures[J]. Int J Heat Mass Tran, 2021, 171: 121064.

    [57] [57] MOREIRA M H, DAL PONT S, AUSAS R F, et al. Direct comparison of multi and single-phase models depicting the drying process of refractory castables[J].Open Ceram, 2021, 6: 100111

    CLP Journals

    [1] WANG Yulong, WANG Zhoufu, WANG Xitang, LIU Hao, MA Yan, JIANG Pengcheng. Research Development of Refractories from Perspective of Knowledge Graph[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12): 4444

    Tools

    Get Citation

    Copy Citation Text

    WANG Yulong, WANG Zhoufu, WANG Xitang, LIU Hao, MA Yan, JIANG Pengcheng. Research Progress on Anti-Spalling of Refractory Castables[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1762

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 12, 2021

    Accepted: --

    Published Online: Dec. 6, 2022

    The Author Email: Yulong WANG (wustwangyl@qq.com)

    DOI:

    CSTR:32186.14.

    Topics