Journal of the Chinese Ceramic Society, Volume. 52, Issue 8, 2643(2024)
Optical Regulation and Applications of Perovskite Nanocrystals in Glass Microdomains
[1] [1] ZHANG X L, WANG W G, XU B, et al. Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering[J]. Nano Energy, 2017, 37: 40–45.
[2] [2] ZENG J P, MENG C F, LI X M, et al. Interfacial-tunneling-effectenhanced CsPbBr3 photodetectors featuring high detectivity and stability[J]. Adv Funct Mater, 2019, 29(51): 1904461.
[3] [3] LI S X, PAN Y, WANG W M, et al. CsPbX3 (X=Cl, Br, I) perovskite quantum dots embedded in glasses: Recent advances and perspectives[J].Chem Eng J, 2022, 434: 134593.
[4] [4] SHI E Z, YUAN B, SHIRING S B, et al. Two-dimensional halide perovskite lateral epitaxial heterostructures[J]. Nature, 2020,580(7805): 614–620.
[5] [5] CHEN H, LI M H, WANG B, et al. Structure, electronic and optical properties of CsPbX3 halide perovskite: A first-principles study[J]. J Alloys Compd, 2021, 862: 158442.
[6] [6] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX?, X=Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett, 2015, 15(6): 3692–3696.
[7] [7] YUAN S, CHEN D Q, LI X Y, et al. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing[J].ACS Appl Mater Interfaces, 2018, 10(22): 18918–18926.
[8] [8] YANG B B, ZHENG F, MEI S L, et al. Component regulation and crystallization mechanism of CsPbBr3/Cs4PbBr6 perovskite composite quantum dots-embedded borosilicate glass for light emitting application[J]. Appl Surf Sci, 2020, 512: 145655.
[9] [9] AI B, LIU C, WANG J, et al. Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses[J]. J Am Ceram Soc, 2016,99(9): 2875–2877.
[10] [10] YE Y, ZHANG W C, ZHAO Z Y, et al. Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications[J]. Adv Opt Mater, 2019, 7(9): 1801663.
[11] [11] ZHANG B W, ZHANG K, LI L F, et al. Enhancing stability and luminescence quantum yield of CsPbBr3 quantum dots by embedded in borosilicate glass[J]. J Alloys Compd, 2021, 874: 159962.
[12] [12] MA W B, JIANG T M, YANG Z, et al. Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering[J]. Adv Sci, 2021, 8(15): e2003728.
[13] [13] HE M L, DING L, LIU S N, et al. Superior fluorescence and high stability of B?Si?Zn glasses based on Mn-doped CsPbBrxI3?x nanocrystals[J]. J Alloys Compd, 2019, 780: 318–325.
[14] [14] CHEN D Q, YUAN S, CHEN X, et al. CsPbX3 (X=Br, I) perovskite quantum dot embedded low-melting phosphosilicate glasses: Controllable crystallization, thermal stability and tunable emissions[J].J Mater Chem C, 2018, 6(25): 6832–6839.
[16] [16] CHEN D Q, LIU Y, YANG C B, et al. Promoting photoluminescence quantum yields of glass-stabilized CsPbX3 (X=Cl, Br, I) perovskite quantum dots through fluorine doping[J]. Nanoscale, 2019, 11(37):17216–17221.
[17] [17] YANG B B, MEI S L, ZHU Y X, et al. Precipitation promotion of highly emissive and stable CsPbX3 (Cl, Br, I) perovskite quantum dots in borosilicate glass with alkaline earth modification[J]. Ceram Int,2023, 49(4): 6720–6728.
[18] [18] XU L, YUAN S, ZENG H, et al. A comprehensive review of doping in perovskite nanocrystals/quantum dots: Evolution of structure, electronics, optics, and light-emitting diodes[J]. Mater Today Nano,2019, 6: 100036.
[19] [19] ZHANG Z M, WANG M M, LIU Y R, et al. Long-term stable and highly efficient photoluminescence from Sr2+-doped CsPbBr3 nanocrystals in boro-germanosilicate glass[J]. Ceram Int, 2022, 48(12):17596–17603.
[20] [20] PARK J P, LEE T K, KWAK S K, et al. Formation of bright-green-color-emitting perovskite CsPbBr3 in a bulk state using a simple recrystallization process[J]. Dyes Pigm, 2017, 144: 151–157.
[21] [21] LIU W Y, LIN Q L, LI H B, et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content[J]. J Am Chem Soc, 2016, 138(45): 14954–14961.
[22] [22] ZHOU Y, LIU C, ZHAO Z Y, et al. Enhanced luminescence of Mn doped CsPbCl3 and CsPb(Cl/Br)3 perovskite nanocrystals stabilized in glasses[J]. J Alloys Compd, 2020, 827: 154349.
[23] [23] ZHANG T, WANG J X, XIN Y F, et al. Tunable luminescence and energy transfer properties based on La2O3-P2O5: Dy3+/Tm3+ glasses[J].J Mater Sci Mater Electron, 2019, 30(13): 12100–12106.
[24] [24] KARBOWIAK M, RUDOWICZ C. Trends in Hamiltonian parameters determined by systematic analysis of f-d absorption spectra of divalent lanthanides in alkali-halides hosts: II. CaCl2: Ln2+ (Ln=Sm, Eu, Tm,and Yb)[J]. J Lumin, 2018, 197: 66–75.
[25] [25] ZHOU L F, HUANG F F, REN G Y, et al. Efficient Er3+: 4I11/2 → 4I13/2 radiative transition regulated by optimizing the sensitization mechanism[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2020, 228:117853.
[26] [26] LI P P, DUAN Y M, LU Y, et al. Nanocrystalline structure control and tunable luminescence mechanism of Eu-doped CsPbBr3 quantum dot glass for WLEDs[J]. Nanoscale, 2020, 12(12): 6630–6636.
[27] [27] EROL E, K?BR?SL? O, ?ELIKBILEK ERSUNDU M, et al. Color tunable emission from Eu3+ and Tm3+ Co-doped CsPbBr3 quantum dot glass nanocomposites[J]. Phys Chem Chem Phys, 2022, 24(3):1486–1495.
[28] [28] LIU X F, ZHOU J J, ZHOU S F, et al. Transparent glass-ceramics functionalized by dispersed crystals[J]. Prog Mater Sci, 2018, 97:38–96.
[29] [29] ZHOU S F, QIU J R. Topological engineering of doped photonic glasses[J]. MRS Bull, 2017, 42(1): 34–38.
[30] [30] DU Y, WANG X, SHEN D Y, et al. Precipitation of CsPbBr3 quantum dots in borophosphate glasses inducted by heat-treatment and UV-NIR ultrafast lasers[J]. Chem Eng J, 2020, 401: 126132.
[31] [31] KERKER M. The scattering of light, and other electromagnetic radiation[M]. New York: Academic Press, 1969.
[32] [32] XIA M L, LUO J J, CHEN C, et al. Semiconductor quantum dots-embedded inorganic glasses: Fabrication, luminescent properties,and potential applications[J]. Adv Opt Mater, 2019, 7(21): 1900851.
[33] [33] ZHANG K, ZHOU D C, QIU J B, et al. Effect of topological structure on photoluminescence of CsPbBr3 quantum dot doped glasses[J]. J Alloys Compd, 2020, 826: 154111.
[35] [35] XU Z S, LIU X F, QIU J R, et al. Enhanced luminescence of CsPbBr3 perovskite quantum-dot-doped borosilicate glasses with Ag nanoparticles[J]. Opt Lett, 2019, 44(22): 5626–5629.
[36] [36] ZHANG K, ZHOU D C, QIU J B, et al. Silver nanoparticles enhanced luminescence and stability of CsPbBr3 perovskite quantum dots in borosilicate glass[J]. J Am Ceram Soc, 2020, 103(4): 2463–2470.
[37] [37] ARUNKUMAR P, CHO H B, GIL K H, et al. Probing molecule-like isolated octahedra via-phase stabilization of zero-dimensional cesium lead halide nanocrystals[J]. Nat Commun, 2018, 9(1): 4691.
[38] [38] KUBICKI D J, PROCHOWICZ D, HOFSTETTER A, et al. Phase segregation in Cs-, Rb- and K-doped mixed-cation (MA)x(FA)1–xPbI3 hybrid perovskites from solid-state NMR[J]. J Am Chem Soc, 2017,139(40): 14173–14180.
[39] [39] SI S C, YU J B, LOU S Q, et al. Engineering the crystallization behavior of CsPbBr3 quantum dots in borosilicate glass through modulating the glass network modifiers for wide-color-gamut displays[J]. J Eur Ceram Soc, 2022, 42(8): 3586–3594.
[40] [40] JAMES P F. Liquid-phase separation in glass-forming systems[J]. J Mater Sci, 1975, 10(10): 1802–1825.
[41] [41] POULAIN M. Glass formation in ionic systems[J]. Nature, 1981, 293:279–280.
[42] [42] KUANG Z J, GUAN M S, GAO M L, et al. Effect of CaO on crystallization and photoluminescence of CsPbBr3 quantum dots germanium borate glass[J]. J Lumin, 2024, 265: 120243.
[43] [43] VEAL B W, LAM D J, PAULIKAS A P, et al. XPS study of CaO in sodium silicate glass[J]. J Non Cryst Solids, 1982, 49(1–3): 309–320.
[44] [44] REDDY M S, MURALI KRISHNA G, VEERAIAH N. Spectroscopic and magnetic studies of manganese ions in ZnO–Sb2O3–B2O3 glass system[J]. J Phys Chem Solids, 2006, 67(4): 789–795.
[45] [45] SZUMERA M, WAC?AWSKA I, SU?OWSKA J. Influence of CuO and ZnO addition on the multicomponent phosphate glasses:Spectroscopic studies[J]. J Mol Struct, 2016, 1114: 78–83.
[46] [46] WAHAB S A A, MATORI K A, AZIZ S H A, et al. Effect of ZnO on the phase transformation and optical properties of silicate glass frits using rice husk ash as a SiO2 source[J]. J Mater Res Technol, 2020,9(5): 11013–11021.
[47] [47] XU Z S, CHEN T, XIA J Z, et al. Effect of ZnO on the crystallization and photoluminescence of CsPbI3 perovskite quantum dots in borosilicate glasses[J]. J Am Ceram Soc, 2022, 105(5): 3303–3311.
[48] [48] SUN K, ZHANG B, GAO K, et al. Localized temperature engineering enables writing of heterostructures in glass for polarized photoluminescence of perovskites[J]. ACS Nano, 2024, 18(8):6550–6557.
[49] [49] YOUNGMAN R E, DEJNEKA M J. NMR studies of fluorine in aluminosilicate–lanthanum fluoride glasses and glass?ceramics[J]. J Am Ceram Soc, 2002, 85(5): 1077–1082.
[50] [50] TIAN X Y, LIAN S X, JI C Y, et al. Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3: Pr3+ red emitting phosphor[J]. J Alloys Compd, 2019, 784: 628–640.
[51] [51] LAKSHMINARAYANA G, WEIS E M, BENNETT B L, et al.Structural, thermal, and luminescence properties of cerium-fluoriderich oxyfluoride glasses[J]. Opt Mater, 2012, 35(2): 117–125.
[52] [52] PENG Y P, YUAN X Q, ZHANG L, et al. Efficient improvement of 2.7 μm luminescence of Er3+: Oxyfluoride glass containing gallium by Yb3+ ions codoping[J]. J Rare Earths, 2019, 37(5): 487–491.
[53] [53] MAAOUI A, HAOUARI M, BULOU A, et al. Effect of BaF2 on the structural and spectroscopic properties of Er3+/Yb3+ ions codoped fluoro-tellurite glasses[J]. J Lumin, 2018, 196: 1–10.
[54] [54] XU Z S, CHEN T, ZHANG D D, et al. Tuning the optical properties in CsPbBr3 quantum dot-doped glass by modulation of its network topology[J]. J Mater Chem C, 2021, 9(21): 6863–6872.
[55] [55] WANG D Z, QIU J B, ZHOU D C, et al. Lithium doping induced self-crystallization of CsPbBr3 nanocrystal glass with improved quantum yield and stability[J]. Chem Eng J, 2021, 421: 127777.
[56] [56] LI J H, ZHOU D C, LIU Y, et al. Engineering CsPbX3 (X=Cl, Br, I)quantum dot-embedded borosilicate glass through self-crystallization facilitated by NaF as a phosphor for full-color illumination and laser-driven projection displays[J]. ACS Appl Mater Interfaces, 2023,15(18): 22219–22230.
[57] [57] ZHENG F, YANG B B, CAO P Y, et al. A novel bulk phosphor for white LDs: CsPbBr3/Cs4PbBr6 composite quantum dots-embedded borosilicate glass with high PLQY and excellent stability[J]. J Alloys Compd, 2020, 818: 153307.
[58] [58] LI X K, SUN K, WU J J, et al. Thermal-triggered phase separation and ion exchange enables photoluminescence tuning of stable mixed-halide perovskite nanocrystals for dynamic display[J]. Laser Photon Rev,2024: 2301244.
[59] [59] YANG C B, ZHUANG B, LIN J D, et al. Ultrastable glass-protected all-inorganic perovskite quantum dots with finely tunable green emissions for approaching Rec. 2020 backlit display[J]. Chem Eng J,2020, 398: 125616.
[60] [60] GOLDSCHMIDT V M. Die gesetze der krystallochemie[J].Naturwissenschaften, 1926, 14(21): 477–485.
[61] [61] LI C, LU X G, DING W Z, et al. Formability of ABX3 (X=F, Cl, Br, I)halide perovskites[J]. Acta Crystallogr B, 2008, 64(6): 702–707.
[62] [62] GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nat Photon, 2014, 8: 506–514.
[63] [63] HUANG H, BODNARCHUK M I, KERSHAW S V, et al. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance[J]. ACS Energy Lett, 2017, 2(9): 2071–2083.
[64] [64] KUMAR A, VERMA A S, BHARDWAJ S R. Prediction of formability in perovskite-type Oxides[J]. Open Appl Phys J, 2008, 1(1):11–19.
[65] [65] ZHAO Y, SHEN C Y, DING L, et al. Novel B-site Cd2+ doped CsPbBr3 quantum dot glass toward strong fluorescence and high stability for wLED[J]. Opt Mater, 2020, 107: 110046.
[66] [66] KOLOBKOVA E V, MAKURIN A V, DADYKIN A Y, et al. Effect of cadmium ions on the growth of CsPbxCD1–xBr3 nanocrystals in fluorophosphate glass[J]. Glass Phys Chem, 2022, 48(5): 403–409.
[67] [67] DING L, LIU S N, ZHANG Z L, et al. Stable Zn-doped CsPbBr3 NCs glasses toward an enhanced optical performance for WLED[J]. Ceram Int, 2019, 45(17): 22699–22706.
[68] [68] LI Z C, ZHOU D C, YANG Y, et al. Effects of crystal structure transformation on cooperative up-conversion luminescence in the Tb3+?Yb3+ Co-doped oxyfluoride glass-ceramics[J]. J Alloys Compd,2018, 731: 1044–1052.
[69] [69] WEI K, LI P P, DUAN Y M, et al. Temperature-dependent color-tunable luminescence in CsPbBr3: Dy3+ glass ceramic[J]. J Non Cryst Solids, 2021, 570: 121022.
[70] [70] LIU S N, SHAO G Z, DING L, et al. Sn-doped CsPbBr3 QDs glasses with excellent stability and optical properties for WLED[J]. Chem Eng J, 2019, 361: 937–944.
[72] [72] SUN K, TAN D Z, FANG X Y, et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass[J]. Science, 2022,375(6578): 307–310.
[73] [73] SUN K, LI X K, TAN D Z, et al. Pure blue perovskites nanocrystals in glass: Ultrafast laser direct writing and bandgap tuning[J]. Laser Photonics Rev, 2023, 17(5): 2200902.
[74] [74] JIN M, ZHOU W J, MA W Q, et al. The inhibition of CsPbBr3 nanocrystals glass from self-crystallization with the assistance of ZnO modulation for rewritable data storage[J]. Chem Eng J, 2022, 427:129812.
[75] [75] SUN K, TAN D Z, SONG J, et al. Highly emissive deep-red perovskite quantum dots in glass: Photoinduced thermal engineering and applications[J]. Adv Opt Mater, 2021, 9(11): 2100094.
[76] [76] YIN X B, YANG R G, TAN G, et al. Terrestrial radiative cooling:Using the cold universe as a renewable and sustainable energy source[J]. Science, 2020, 370(6518): 786–791.
[77] [77] LIU B, LI J K, CAO B Q, et al. Phosphor-aluminosilicate CsPbX3 perovskite fluorescent glass with low formation temperature for photoluminescence display applications[J]. ChemPhysMater, 2023,2(4): 323–330.
[78] [78] CHEN S X, LIN J D, ZHENG S, et al. Efficient and stable perovskite white light-emitting diodes for backlit display[J]. Adv Funct Mater,2023, 33(18): 2213442.
[79] [79] TAN D Z, WANG Z, XU B B, et al. Photonic circuits written by femtosecond laser in glass: Improved fabrication and recent progress in photonic devices[J]. AP, 2021, 3(2): 024002.
[80] [80] FERREIRA P H D, FABRIS D C N, VILLAS BOAS M O C, et al.Transparent glass-ceramic waveguides made by femtosecond laser writing[J]. Opt Laser Technol, 2021, 136: 106742.
[81] [81] LIU Y, SHIMIZU M, ZHU B, et al. Micromodification of element distribution in glass using femtosecond laser irradiation[J]. Opt Lett,2009, 34(2): 136–138.
[82] [82] SAMIEI S, SOHEYLI E, VIGHNESH K, et al. Exploring CsPbX3 (X=Cl, Br, I) perovskite nanocrystals in amorphous oxide glasses:Innovations in fabrication and applications[J]. Small, 2023: 2307972.
[83] [83] LI P P, LU Y, DUAN Y M, et al. Potential application of perovskite glass material in photocatalysis field[J]. J Phys Chem C, 2021, 125(4):2382–2392.
[84] [84] DING L, SHEN C Y, ZHAO Y, et al. CsPbBr3 nanocrystals glass facilitated with Zn ions for photocatalytic hydrogen production via H2O splitting[J]. Mol Catal, 2020, 483: 110764.
[85] [85] LIU X D, SHAO G Z, ZHANG Y J, et al. CsPbCl1.5Br1.5 perovskite nanocrystals glasses powder optimized by Zn2+ for photocatalytic hydrogen production[J]. Mol Catal, 2021, 499: 111305.
[86] [86] WANG C, LIN H, ZHANG Z, et al. X-ray excited CsPb(Cl, Br)3 perovskite quantum dots-glass composite with long-lifetime[J]. J Eur Ceram Soc, 2020, 40(5): 2234–2238.
[87] [87] ZHANG H, YANG Z, ZHOU M, et al. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure[J]. Adv Mater, 2021, 33(40): e2102529.
Get Citation
Copy Citation Text
RUAN Chao, SUN Ke, LI Xinkuo, QIU Jianrong, TAN Dezhi. Optical Regulation and Applications of Perovskite Nanocrystals in Glass Microdomains[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2643
Category:
Received: Jan. 26, 2024
Accepted: --
Published Online: Dec. 4, 2024
The Author Email: Dezhi TAN (wctdz@zju.edu.cn)