Journal of the Chinese Ceramic Society, Volume. 52, Issue 8, 2643(2024)

Optical Regulation and Applications of Perovskite Nanocrystals in Glass Microdomains

RUAN Chao1...2, SUN Ke2, LI Xinkuo1,2, QIU Jianrong3 and TAN Dezhi2,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(84)

    [1] [1] ZHANG X L, WANG W G, XU B, et al. Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering[J]. Nano Energy, 2017, 37: 40–45.

    [2] [2] ZENG J P, MENG C F, LI X M, et al. Interfacial-tunneling-effectenhanced CsPbBr3 photodetectors featuring high detectivity and stability[J]. Adv Funct Mater, 2019, 29(51): 1904461.

    [3] [3] LI S X, PAN Y, WANG W M, et al. CsPbX3 (X=Cl, Br, I) perovskite quantum dots embedded in glasses: Recent advances and perspectives[J].Chem Eng J, 2022, 434: 134593.

    [4] [4] SHI E Z, YUAN B, SHIRING S B, et al. Two-dimensional halide perovskite lateral epitaxial heterostructures[J]. Nature, 2020,580(7805): 614–620.

    [5] [5] CHEN H, LI M H, WANG B, et al. Structure, electronic and optical properties of CsPbX3 halide perovskite: A first-principles study[J]. J Alloys Compd, 2021, 862: 158442.

    [6] [6] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX?, X=Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett, 2015, 15(6): 3692–3696.

    [7] [7] YUAN S, CHEN D Q, LI X Y, et al. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing[J].ACS Appl Mater Interfaces, 2018, 10(22): 18918–18926.

    [8] [8] YANG B B, ZHENG F, MEI S L, et al. Component regulation and crystallization mechanism of CsPbBr3/Cs4PbBr6 perovskite composite quantum dots-embedded borosilicate glass for light emitting application[J]. Appl Surf Sci, 2020, 512: 145655.

    [9] [9] AI B, LIU C, WANG J, et al. Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses[J]. J Am Ceram Soc, 2016,99(9): 2875–2877.

    [10] [10] YE Y, ZHANG W C, ZHAO Z Y, et al. Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications[J]. Adv Opt Mater, 2019, 7(9): 1801663.

    [11] [11] ZHANG B W, ZHANG K, LI L F, et al. Enhancing stability and luminescence quantum yield of CsPbBr3 quantum dots by embedded in borosilicate glass[J]. J Alloys Compd, 2021, 874: 159962.

    [12] [12] MA W B, JIANG T M, YANG Z, et al. Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering[J]. Adv Sci, 2021, 8(15): e2003728.

    [13] [13] HE M L, DING L, LIU S N, et al. Superior fluorescence and high stability of B?Si?Zn glasses based on Mn-doped CsPbBrxI3?x nanocrystals[J]. J Alloys Compd, 2019, 780: 318–325.

    [14] [14] CHEN D Q, YUAN S, CHEN X, et al. CsPbX3 (X=Br, I) perovskite quantum dot embedded low-melting phosphosilicate glasses: Controllable crystallization, thermal stability and tunable emissions[J].J Mater Chem C, 2018, 6(25): 6832–6839.

    [16] [16] CHEN D Q, LIU Y, YANG C B, et al. Promoting photoluminescence quantum yields of glass-stabilized CsPbX3 (X=Cl, Br, I) perovskite quantum dots through fluorine doping[J]. Nanoscale, 2019, 11(37):17216–17221.

    [17] [17] YANG B B, MEI S L, ZHU Y X, et al. Precipitation promotion of highly emissive and stable CsPbX3 (Cl, Br, I) perovskite quantum dots in borosilicate glass with alkaline earth modification[J]. Ceram Int,2023, 49(4): 6720–6728.

    [18] [18] XU L, YUAN S, ZENG H, et al. A comprehensive review of doping in perovskite nanocrystals/quantum dots: Evolution of structure, electronics, optics, and light-emitting diodes[J]. Mater Today Nano,2019, 6: 100036.

    [19] [19] ZHANG Z M, WANG M M, LIU Y R, et al. Long-term stable and highly efficient photoluminescence from Sr2+-doped CsPbBr3 nanocrystals in boro-germanosilicate glass[J]. Ceram Int, 2022, 48(12):17596–17603.

    [20] [20] PARK J P, LEE T K, KWAK S K, et al. Formation of bright-green-color-emitting perovskite CsPbBr3 in a bulk state using a simple recrystallization process[J]. Dyes Pigm, 2017, 144: 151–157.

    [21] [21] LIU W Y, LIN Q L, LI H B, et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content[J]. J Am Chem Soc, 2016, 138(45): 14954–14961.

    [22] [22] ZHOU Y, LIU C, ZHAO Z Y, et al. Enhanced luminescence of Mn doped CsPbCl3 and CsPb(Cl/Br)3 perovskite nanocrystals stabilized in glasses[J]. J Alloys Compd, 2020, 827: 154349.

    [23] [23] ZHANG T, WANG J X, XIN Y F, et al. Tunable luminescence and energy transfer properties based on La2O3-P2O5: Dy3+/Tm3+ glasses[J].J Mater Sci Mater Electron, 2019, 30(13): 12100–12106.

    [24] [24] KARBOWIAK M, RUDOWICZ C. Trends in Hamiltonian parameters determined by systematic analysis of f-d absorption spectra of divalent lanthanides in alkali-halides hosts: II. CaCl2: Ln2+ (Ln=Sm, Eu, Tm,and Yb)[J]. J Lumin, 2018, 197: 66–75.

    [25] [25] ZHOU L F, HUANG F F, REN G Y, et al. Efficient Er3+: 4I11/2 → 4I13/2 radiative transition regulated by optimizing the sensitization mechanism[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2020, 228:117853.

    [26] [26] LI P P, DUAN Y M, LU Y, et al. Nanocrystalline structure control and tunable luminescence mechanism of Eu-doped CsPbBr3 quantum dot glass for WLEDs[J]. Nanoscale, 2020, 12(12): 6630–6636.

    [27] [27] EROL E, K?BR?SL? O, ?ELIKBILEK ERSUNDU M, et al. Color tunable emission from Eu3+ and Tm3+ Co-doped CsPbBr3 quantum dot glass nanocomposites[J]. Phys Chem Chem Phys, 2022, 24(3):1486–1495.

    [28] [28] LIU X F, ZHOU J J, ZHOU S F, et al. Transparent glass-ceramics functionalized by dispersed crystals[J]. Prog Mater Sci, 2018, 97:38–96.

    [29] [29] ZHOU S F, QIU J R. Topological engineering of doped photonic glasses[J]. MRS Bull, 2017, 42(1): 34–38.

    [30] [30] DU Y, WANG X, SHEN D Y, et al. Precipitation of CsPbBr3 quantum dots in borophosphate glasses inducted by heat-treatment and UV-NIR ultrafast lasers[J]. Chem Eng J, 2020, 401: 126132.

    [31] [31] KERKER M. The scattering of light, and other electromagnetic radiation[M]. New York: Academic Press, 1969.

    [32] [32] XIA M L, LUO J J, CHEN C, et al. Semiconductor quantum dots-embedded inorganic glasses: Fabrication, luminescent properties,and potential applications[J]. Adv Opt Mater, 2019, 7(21): 1900851.

    [33] [33] ZHANG K, ZHOU D C, QIU J B, et al. Effect of topological structure on photoluminescence of CsPbBr3 quantum dot doped glasses[J]. J Alloys Compd, 2020, 826: 154111.

    [35] [35] XU Z S, LIU X F, QIU J R, et al. Enhanced luminescence of CsPbBr3 perovskite quantum-dot-doped borosilicate glasses with Ag nanoparticles[J]. Opt Lett, 2019, 44(22): 5626–5629.

    [36] [36] ZHANG K, ZHOU D C, QIU J B, et al. Silver nanoparticles enhanced luminescence and stability of CsPbBr3 perovskite quantum dots in borosilicate glass[J]. J Am Ceram Soc, 2020, 103(4): 2463–2470.

    [37] [37] ARUNKUMAR P, CHO H B, GIL K H, et al. Probing molecule-like isolated octahedra via-phase stabilization of zero-dimensional cesium lead halide nanocrystals[J]. Nat Commun, 2018, 9(1): 4691.

    [38] [38] KUBICKI D J, PROCHOWICZ D, HOFSTETTER A, et al. Phase segregation in Cs-, Rb- and K-doped mixed-cation (MA)x(FA)1–xPbI3 hybrid perovskites from solid-state NMR[J]. J Am Chem Soc, 2017,139(40): 14173–14180.

    [39] [39] SI S C, YU J B, LOU S Q, et al. Engineering the crystallization behavior of CsPbBr3 quantum dots in borosilicate glass through modulating the glass network modifiers for wide-color-gamut displays[J]. J Eur Ceram Soc, 2022, 42(8): 3586–3594.

    [40] [40] JAMES P F. Liquid-phase separation in glass-forming systems[J]. J Mater Sci, 1975, 10(10): 1802–1825.

    [41] [41] POULAIN M. Glass formation in ionic systems[J]. Nature, 1981, 293:279–280.

    [42] [42] KUANG Z J, GUAN M S, GAO M L, et al. Effect of CaO on crystallization and photoluminescence of CsPbBr3 quantum dots germanium borate glass[J]. J Lumin, 2024, 265: 120243.

    [43] [43] VEAL B W, LAM D J, PAULIKAS A P, et al. XPS study of CaO in sodium silicate glass[J]. J Non Cryst Solids, 1982, 49(1–3): 309–320.

    [44] [44] REDDY M S, MURALI KRISHNA G, VEERAIAH N. Spectroscopic and magnetic studies of manganese ions in ZnO–Sb2O3–B2O3 glass system[J]. J Phys Chem Solids, 2006, 67(4): 789–795.

    [45] [45] SZUMERA M, WAC?AWSKA I, SU?OWSKA J. Influence of CuO and ZnO addition on the multicomponent phosphate glasses:Spectroscopic studies[J]. J Mol Struct, 2016, 1114: 78–83.

    [46] [46] WAHAB S A A, MATORI K A, AZIZ S H A, et al. Effect of ZnO on the phase transformation and optical properties of silicate glass frits using rice husk ash as a SiO2 source[J]. J Mater Res Technol, 2020,9(5): 11013–11021.

    [47] [47] XU Z S, CHEN T, XIA J Z, et al. Effect of ZnO on the crystallization and photoluminescence of CsPbI3 perovskite quantum dots in borosilicate glasses[J]. J Am Ceram Soc, 2022, 105(5): 3303–3311.

    [48] [48] SUN K, ZHANG B, GAO K, et al. Localized temperature engineering enables writing of heterostructures in glass for polarized photoluminescence of perovskites[J]. ACS Nano, 2024, 18(8):6550–6557.

    [49] [49] YOUNGMAN R E, DEJNEKA M J. NMR studies of fluorine in aluminosilicate–lanthanum fluoride glasses and glass?ceramics[J]. J Am Ceram Soc, 2002, 85(5): 1077–1082.

    [50] [50] TIAN X Y, LIAN S X, JI C Y, et al. Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3: Pr3+ red emitting phosphor[J]. J Alloys Compd, 2019, 784: 628–640.

    [51] [51] LAKSHMINARAYANA G, WEIS E M, BENNETT B L, et al.Structural, thermal, and luminescence properties of cerium-fluoriderich oxyfluoride glasses[J]. Opt Mater, 2012, 35(2): 117–125.

    [52] [52] PENG Y P, YUAN X Q, ZHANG L, et al. Efficient improvement of 2.7 μm luminescence of Er3+: Oxyfluoride glass containing gallium by Yb3+ ions codoping[J]. J Rare Earths, 2019, 37(5): 487–491.

    [53] [53] MAAOUI A, HAOUARI M, BULOU A, et al. Effect of BaF2 on the structural and spectroscopic properties of Er3+/Yb3+ ions codoped fluoro-tellurite glasses[J]. J Lumin, 2018, 196: 1–10.

    [54] [54] XU Z S, CHEN T, ZHANG D D, et al. Tuning the optical properties in CsPbBr3 quantum dot-doped glass by modulation of its network topology[J]. J Mater Chem C, 2021, 9(21): 6863–6872.

    [55] [55] WANG D Z, QIU J B, ZHOU D C, et al. Lithium doping induced self-crystallization of CsPbBr3 nanocrystal glass with improved quantum yield and stability[J]. Chem Eng J, 2021, 421: 127777.

    [56] [56] LI J H, ZHOU D C, LIU Y, et al. Engineering CsPbX3 (X=Cl, Br, I)quantum dot-embedded borosilicate glass through self-crystallization facilitated by NaF as a phosphor for full-color illumination and laser-driven projection displays[J]. ACS Appl Mater Interfaces, 2023,15(18): 22219–22230.

    [57] [57] ZHENG F, YANG B B, CAO P Y, et al. A novel bulk phosphor for white LDs: CsPbBr3/Cs4PbBr6 composite quantum dots-embedded borosilicate glass with high PLQY and excellent stability[J]. J Alloys Compd, 2020, 818: 153307.

    [58] [58] LI X K, SUN K, WU J J, et al. Thermal-triggered phase separation and ion exchange enables photoluminescence tuning of stable mixed-halide perovskite nanocrystals for dynamic display[J]. Laser Photon Rev,2024: 2301244.

    [59] [59] YANG C B, ZHUANG B, LIN J D, et al. Ultrastable glass-protected all-inorganic perovskite quantum dots with finely tunable green emissions for approaching Rec. 2020 backlit display[J]. Chem Eng J,2020, 398: 125616.

    [60] [60] GOLDSCHMIDT V M. Die gesetze der krystallochemie[J].Naturwissenschaften, 1926, 14(21): 477–485.

    [61] [61] LI C, LU X G, DING W Z, et al. Formability of ABX3 (X=F, Cl, Br, I)halide perovskites[J]. Acta Crystallogr B, 2008, 64(6): 702–707.

    [62] [62] GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nat Photon, 2014, 8: 506–514.

    [63] [63] HUANG H, BODNARCHUK M I, KERSHAW S V, et al. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance[J]. ACS Energy Lett, 2017, 2(9): 2071–2083.

    [64] [64] KUMAR A, VERMA A S, BHARDWAJ S R. Prediction of formability in perovskite-type Oxides[J]. Open Appl Phys J, 2008, 1(1):11–19.

    [65] [65] ZHAO Y, SHEN C Y, DING L, et al. Novel B-site Cd2+ doped CsPbBr3 quantum dot glass toward strong fluorescence and high stability for wLED[J]. Opt Mater, 2020, 107: 110046.

    [66] [66] KOLOBKOVA E V, MAKURIN A V, DADYKIN A Y, et al. Effect of cadmium ions on the growth of CsPbxCD1–xBr3 nanocrystals in fluorophosphate glass[J]. Glass Phys Chem, 2022, 48(5): 403–409.

    [67] [67] DING L, LIU S N, ZHANG Z L, et al. Stable Zn-doped CsPbBr3 NCs glasses toward an enhanced optical performance for WLED[J]. Ceram Int, 2019, 45(17): 22699–22706.

    [68] [68] LI Z C, ZHOU D C, YANG Y, et al. Effects of crystal structure transformation on cooperative up-conversion luminescence in the Tb3+?Yb3+ Co-doped oxyfluoride glass-ceramics[J]. J Alloys Compd,2018, 731: 1044–1052.

    [69] [69] WEI K, LI P P, DUAN Y M, et al. Temperature-dependent color-tunable luminescence in CsPbBr3: Dy3+ glass ceramic[J]. J Non Cryst Solids, 2021, 570: 121022.

    [70] [70] LIU S N, SHAO G Z, DING L, et al. Sn-doped CsPbBr3 QDs glasses with excellent stability and optical properties for WLED[J]. Chem Eng J, 2019, 361: 937–944.

    [72] [72] SUN K, TAN D Z, FANG X Y, et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass[J]. Science, 2022,375(6578): 307–310.

    [73] [73] SUN K, LI X K, TAN D Z, et al. Pure blue perovskites nanocrystals in glass: Ultrafast laser direct writing and bandgap tuning[J]. Laser Photonics Rev, 2023, 17(5): 2200902.

    [74] [74] JIN M, ZHOU W J, MA W Q, et al. The inhibition of CsPbBr3 nanocrystals glass from self-crystallization with the assistance of ZnO modulation for rewritable data storage[J]. Chem Eng J, 2022, 427:129812.

    [75] [75] SUN K, TAN D Z, SONG J, et al. Highly emissive deep-red perovskite quantum dots in glass: Photoinduced thermal engineering and applications[J]. Adv Opt Mater, 2021, 9(11): 2100094.

    [76] [76] YIN X B, YANG R G, TAN G, et al. Terrestrial radiative cooling:Using the cold universe as a renewable and sustainable energy source[J]. Science, 2020, 370(6518): 786–791.

    [77] [77] LIU B, LI J K, CAO B Q, et al. Phosphor-aluminosilicate CsPbX3 perovskite fluorescent glass with low formation temperature for photoluminescence display applications[J]. ChemPhysMater, 2023,2(4): 323–330.

    [78] [78] CHEN S X, LIN J D, ZHENG S, et al. Efficient and stable perovskite white light-emitting diodes for backlit display[J]. Adv Funct Mater,2023, 33(18): 2213442.

    [79] [79] TAN D Z, WANG Z, XU B B, et al. Photonic circuits written by femtosecond laser in glass: Improved fabrication and recent progress in photonic devices[J]. AP, 2021, 3(2): 024002.

    [80] [80] FERREIRA P H D, FABRIS D C N, VILLAS BOAS M O C, et al.Transparent glass-ceramic waveguides made by femtosecond laser writing[J]. Opt Laser Technol, 2021, 136: 106742.

    [81] [81] LIU Y, SHIMIZU M, ZHU B, et al. Micromodification of element distribution in glass using femtosecond laser irradiation[J]. Opt Lett,2009, 34(2): 136–138.

    [82] [82] SAMIEI S, SOHEYLI E, VIGHNESH K, et al. Exploring CsPbX3 (X=Cl, Br, I) perovskite nanocrystals in amorphous oxide glasses:Innovations in fabrication and applications[J]. Small, 2023: 2307972.

    [83] [83] LI P P, LU Y, DUAN Y M, et al. Potential application of perovskite glass material in photocatalysis field[J]. J Phys Chem C, 2021, 125(4):2382–2392.

    [84] [84] DING L, SHEN C Y, ZHAO Y, et al. CsPbBr3 nanocrystals glass facilitated with Zn ions for photocatalytic hydrogen production via H2O splitting[J]. Mol Catal, 2020, 483: 110764.

    [85] [85] LIU X D, SHAO G Z, ZHANG Y J, et al. CsPbCl1.5Br1.5 perovskite nanocrystals glasses powder optimized by Zn2+ for photocatalytic hydrogen production[J]. Mol Catal, 2021, 499: 111305.

    [86] [86] WANG C, LIN H, ZHANG Z, et al. X-ray excited CsPb(Cl, Br)3 perovskite quantum dots-glass composite with long-lifetime[J]. J Eur Ceram Soc, 2020, 40(5): 2234–2238.

    [87] [87] ZHANG H, YANG Z, ZHOU M, et al. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure[J]. Adv Mater, 2021, 33(40): e2102529.

    Tools

    Get Citation

    Copy Citation Text

    RUAN Chao, SUN Ke, LI Xinkuo, QIU Jianrong, TAN Dezhi. Optical Regulation and Applications of Perovskite Nanocrystals in Glass Microdomains[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2643

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 26, 2024

    Accepted: --

    Published Online: Dec. 4, 2024

    The Author Email: Dezhi TAN (wctdz@zju.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240076

    Topics