Electro-Optic Technology Application, Volume. 37, Issue 1, 1(2022)

Preparation and Application of Nitrogen Vacancy Color Center in Diamond (Invited)

HAO Xin1,2, YIN Siyu3, ZHANG Zongda3, DING Jie1,2, TIAN Zhennan3, and BAI Zhenxu1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(62)

    [1] [1] SCHUELKE T, GROTJOHN TA. Diamond polishing[J]. Diamond and Related Materials, 2013, 32: 17-26.

    [2] [2] TZUK Y, TAL A, GOLDRING S, et al. Diamond cooling of high-power diode-pumped solid-state lasers [J]. Institute of Electrical and Electronics Journal of Quantum Electronics, 2004, 40(3): 262-269.

    [6] [6] WILLIAMS RJ, KITZLER O, BAI Z, et al. High power diamond Raman lasers[J]. Institute of Electrical and Electronics Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1602214.

    [12] [12] AHARONOVICH I, NEU E. Diamond Nanophotonocs[J]. Advanced Optical Materials, 2015, 2(10): 911-928.

    [13] [13] DYER H B, RAAL F A, DU PREEZ L, et al. Optical absorption features associated with paramagnetic nitrogen in diamond[J]. Philosophical Magazine, 1965, 11(112): 763-774.

    [14] [14] TETIENNE J P, HINGANT T, KIM J-V, et al. Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope[J]. Science, 2014, 344(6190): 1366-1369.

    [15] [15] DOLDE F, FEDDER H, DOHERTY M W, et al. Electric-field sensing using single diamond spins[J]. Nature Physics, 2011, 7(6): 459-463.

    [16] [16] ANDRICH, PAOLO, LI, et al. Microscale-resolution thermal mapping using a flexible platform of patterned quantum sensors[J]. Nano Letters, 2018, 18(8): 4684-4690.

    [17] [17] G, KUCSKO, P, et al. Nanometre-scale thermometry in a living cell[J]. Nature, 2013, 500(7460): 54-58.

    [18] [18] RONDIN L. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer[J]. Applied Physics Letters, 2012, 100(15): 153118.

    [19] [19] KOLKOWITZ S, JAYICH A C B, UNTERREITHMEIERr Q P, et al. Coherent sensing of a mechanical resonator with a single-spin qubit [J]. Science, 2012, 335(6076): 1603-1606.

    [20] [20] WALDHERR G, WANG Y, ZAISER S, et al. Quantum error correction in a solid-state hybrid spin register[J]. Nature, 2012, 506(7487): 204-207.

    [21] [21] DOLDE F, BERGHOLM V, WANG Y, et al. High-fidelity spin entanglement using optimal control[J]. Nature Communications, 2014, 5(2): 3371.

    [22] [22] OSSEFORTH C, MOFFITT J R, SCHERMELLEH L, et al. Simultaneous dual-color 3D STED microscopy[J]. Optics Express, 2014, 22(6): 7028-7039.

    [23] [23] BALASUBRAMANIAN G, NEUMANN P, TWITCHEN D, et al. Ultralong spin coherence time in isotopically engineered diamond[J]. Nature Materials, 2009, 8(5): 383-387.

    [24] [24] JAHNKE K D, NAYDENOV B, TERAJI T, et al. Long coherence time of spin qubits in 12C enriched polycrystalline chemical vapor deposition diamond[J]. Applied Physics Letters, 2012, 101(1): 012405.

    [26] [26] MüLLER C. Sensing single spins with colour centres in diamond[D]. Ulm: Universit?t Ulm, 2016.

    [27] [27] SUTER D, JELEZKO F. Single-spin magnetic resonance in the nitrogen-vacancy center of diamond[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2017, 98-99: 50-62.

    [28] [28] GRUBER A, DRABENSTEDT A, TIETZ C, et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers[J]. Science, 1997, 276(5321): 2012-2014.

    [29] [29] MCLELLAN C A, MYERS B A, KRAEMER S, et al. Deterministic formation of highly coherent nitrogen-vacancy centers using a focused electron irradiation technique[J]. Nano Letters, 2015, 16(4): 2450-2454.

    [31] [31] ORWA J O, GREENTREE A D, AHARONOVICH I, et al. Fabrication of single optical centres in diamond-a review [J]. Journal of Luminescence, 2010, 130(9): 1646-1654.

    [32] [32] OHNO K, HEREMANS F J, BASSETT L C, et al. Engineering shallow spins in diamond with nitrogen delta-doping[J]. Applied Physics Letters, 2012, 101(8): 082413.

    [35] [35] LINH, PHAM L M, STEPHEN, et al. NMR technique for determining the depth of shallow nitrogen-vacancy centers in diamond[J]. Physical Review Letters, 2016, 93(4): 045425.

    [36] [36] MARTIN J, WANNEMACHER R, TEICHERT J, et al. Generation and detection of fluorescent color centers in diamond with submicron resolution[J]. Applied Physics Letters, 1999, 75(20): 3096-3098.

    [37] [37] OHNO K, HEREMANS F J, DE L, et al. Three-dimensional localization of spins in diamond using 12C implantation[J]. Applied Physics Letters, 2014, 105(5): 052406.

    [38] [38] PEZZAGNA S, WILDANGER D, MAZAROV P, et al. Nanoscale engineering and optical addressing of single spins in diamond[J]. Small, 2010, 6(19): 2117-2121.

    [39] [39] FENG F, WANG J, ZHANG W, et al. Efficient generation of nanoscale arrays of nitrogen-vacancy centers with long coherence time in diamond[J]. Applied Physics A, 2016, 122(11): 944.

    [40] [40] GAO S, YIN S Y, LIU Z X, et al. Narrow-linewidth diamond single-photon sources prepared via femtosecond laser[J]. Applied Physics Letters, 2022, 120(2): 023104.

    [41] [41] GAO S, TIAN Z N, YU P, et al. Deep diamond single-photon sources prepared by a femtosecond laser[J]. Optics Letters, 2021, 46(17):4386-4389.

    [42] [42] GAO S, DUAN Y Z, TIAN Z N, et al. Laser-induced color centers in crystals[J]. Optics and laser technology, 2022, 146: 107527.

    [45] [45] CHEN Y C, SALTER P S, KNAUER S, et al. Laser writing of coherent colour centres in diamond[J]. Nature Photonics, 2017, 11(2): 77-80.

    [46] [46] CHEN Y C, GRIFFITHS B, WENG L, et al. Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield[J]. Optica, 2019, 6(5): 662-667.

    [47] [47] BERNARDI E, NELZ R, SONUSEN S, et al. Nanoscale sensing using point defects in single-crystal diamond: recent progress on nitrogen vacancy center-based sensors[J]. Crystals, 2017, 7(5): 124.

    [48] [48] TAYLOR J M, CAPPELLARO P, CHILDRESS L, et al. High-sensitivity diamond magnetometer with nanoscale resolution[J]. Nature Physics, 2008, 4(10): 810-816.

    [49] [49] BALASUBRAMANIAN G, CHAN I Y, KOLEESOV R, et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions[J]. Nature, 2008, 455(7213): 648-651.

    [50] [50] MAZE J R, STANWIX P L, HODGES J S, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond[J]. Nature, 2008, 455(7213): 644-647.

    [51] [51] LE Sage D, ARAI K, GLENN D R, et al. Optical magnetic imaging of living cells[J]. Nature, 2013, 496(7446): 486-489

    [52] [52] CLEVENSON H, TRUSHEIM M E, TEALE C, et al. Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide[J]. Nature Physics, 2015, 11(5): 393-397.

    [53] [53] CHATZIDROSOS G, WICKENBROCK A, BOUGAS L, et al. Miniature cavity-enhanced diamond magnetometer[J]. Physical Review Applied, 2017, 8(4): 044019.

    [54] [54] OORT E V, GLASBEEK M. Electric-field-induced modulation of spin echoes of N-V centers in diamond[J]. Chemical Physics Letters, 1990, 168(6): 529-532.

    [55] [55] TAMARAT P, GAEBEL T, RABEAU J R, et al. Stark shift control of single optical centers in diamond[J]. Physical Review Letters, 2006, 97(8): 083002.

    [56] [56] DOLDE F, DOHERTY M W, MICHL J, et al. Nanoscale detection of a single fundamental charge in ambient conditions using the NV-center in diamond[J]. Physical Review Letters, 2014, 112(9): 097603.

    [57] [57] BARRY J F, TURNER M J, SCHLOSS J M , et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond[J]. Proceedings of the National Academy of Sciences, 2016, 113(49): 14133-14138.

    [58] [58] ACOSTA V M, BAUCH E, LEDBETTER M P, et al. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond[J]. Physical Review Letters, 2010, 104(7): 070801.

    [59] [59] CHEN X D, DONG C H, SUN F W, et al. Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond[J]. Applied Physics Letters, 2011, 99(16): 161903.

    [60] [60] G, DE, LANGE, et al. Universal dynamical decoupling of a single solid-state spin from a spin bath[J]. Science, 2010, 330(6000), 60-63.

    [61] [61] ZHANG S C, DONG Y, DU B, et al. A robust fiber-based quantum thermometer coupled with nitrogen-vacancy centers[J]. Review of Scientific Instruments, 2021, 92(4): 044904.

    [65] [65] BENNETT C H, BRASSARD G. An update on quantum cryptography[C]. Workshop on the Theory and Application of Cryptographic Techniques. Berlin: Springer, 1984: 475-480.

    [66] [66] EKERT, ARTUR K. Quantum cryptography based on Bell′s theorem[J]. Physical Review Letters, 1991, 67(6): 661-663.

    [67] [67] BENNETT C H, BRASSARD G, CRéPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Physical Review Letters, 1993, 70(13): 1895-1899.

    [69] [69] BERNIEN H, HENSEN B, PFAFF W, et al. Heralded entanglement between solid-state qubits separated by three metres[J]. Nature, 2013, 497(7447): 86-90.

    [71] [71] NEMOTO K, TRUPKE M, DEVITT S J, et al. Photonic quantum networks formed from NV-centers[J]. Scientific Reports, 2016, 6: 26284.

    [72] [72] LESIK M, RAATZ N, TALLAIRE A, et al. Production of bulk NV centre arrays by shallow implantation and diamond CVD overgrowth: production of bulk NV centre arrays[J]. Physica Status Solidi (A) Applications and Materials, 2016, 213(10): 2594-2600.

    [73] [73] RABL P, CAPPELLARO P, DUTT M, et al. Strong magnetic coupling between an electronic spin qubit and a mechanical resonator[J]. Physical Review B Condensed Matter, 2008, 79(4): 041302.

    [74] [74] BARCLAY P E, FU K, SANTORI C, et al. Hybrid nanocavity resonant enhancement of color center emission in diamond [J]. Physical Review X, 2011, 1(1): 011007.

    [75] [75] YAO N Y, JIANG L, GORSHKOV A V, et al. Scalable architecture for a room temperature solid-state quantum information processor [J]. Nature Communications, 2012, 3(4): 800.

    [76] [76] VAN D, WANG Z H, BLOK M S, et al. Decoherence-protected quantum gates for a hybrid solid-state spin register[J]. Nature, 2012, 484(7392): 82-86.

    [77] [77] DUTT M V, CHILDRESS L, JIANG L, et al. Quantum register based on individual electronic and nuclear spin qubits in diamond[J]. Science, 2007, 316(5829): 1312-1316.

    [78] [78] NEUMANN P, KOLESOV R, NAYDENOV B, et al. Quantum register based on coupled electron spins in a room-temperature solid[J]. Nature Physics, 2012, 6(4): 249-253.

    [79] [79] SHI F, RONG X, XU N, et al. Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond[J]. Physical Review Letters, 2010, 105(4): 040504.

    Tools

    Get Citation

    Copy Citation Text

    HAO Xin, YIN Siyu, ZHANG Zongda, DING Jie, TIAN Zhennan, BAI Zhenxu. Preparation and Application of Nitrogen Vacancy Color Center in Diamond (Invited)[J]. Electro-Optic Technology Application, 2022, 37(1): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 22, 2022

    Accepted: --

    Published Online: Apr. 22, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics