Acta Photonica Sinica, Volume. 53, Issue 5, 0553113(2024)
Polycrystalline Silicon Cascade Self-luminous Devices in Monolithic Sensing Systems
[1] O BOYRAZ, B JALALI. Demonstration of a silicon Raman laser. Optics Express, 12, 5269-5273(2004).
[2] A CULLIS, L CANHAM, P CALCOTT. The structural and luminescence properties of porous silicon. Journal of Applied Physics, 82, 909-965(1997).
[3] W DE BOER, D TIMMERMAN, K DOHNALOVÁ et al. Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. Nature Nanotechnology, 5, 878-884(2010).
[4] J BRUNNER, U MENCZIGAR, M GAIL et al. Influence of growth conditions on the photoluminescence of pseudomorphic MBE grown Si1-xGex quantum wells. Journal of Crystal Growth, 127, 443-446(1993).
[5] Yiyin ZHOU, Yuanhao MIAO, OJO S et al. Electrically injected GeSn lasers on Si operating up to 100 K. Optica, 7, 924-928(2020).
[6] R NEWMAN. Visible light from a silicon p-n junction. Physical Review, 100, 700-704(1955).
[7] Kaikai XU, G LI. A novel way to improve the quantum efficiency of silicon light-emitting diode in a standard silicon complementary metal-oxide-semiconductor technology. Journal of Applied Physics, 113, 103106(2013).
[8] M PLESSIS, P VENTER, A BOGALECKI. Using reach-through techniques to improve the external power efficiency of silicon CMOS light emitting devices, 7606(2010).
[9] S DUTTA, R HUETING, A ANNEMA et al. Opto-electronic modeling of light emission from avalanche-mode silicon p+ n junctions. Journal of Applied Physics, 118, 114506(2015).
[10] H AHARONI, M PLESSIS. Low-operating-voltage integrated silicon light-emitting devices. IEEE Journal of Quantum Electronics, 40, 557-563(2004).
[11] M PLESSIS, J PETRUS, B ENRICO. Spectral characteristics of hot electron electroluminescence in silicon avalanching junctions. IEEE Journal of Quantum Electronics, 49, 570-577(2013).
[12] M PLESSIS, Hanqing WEN, E BELLOTTI. Temperature characteristics of hot electron electroluminescence in silicon. Optics Express, 23, 12605-12612(2015).
[13] A OKHAI, L SNYMAN, J POLLEUX. Wavelength dispersion phenomena observed for emitted optical radiation from a p+ nn+ silicon avalanche mode light-emitting device in a radio frequency bipolar-integrated circuitry. Optical Engineering, 58, 017104(2019).
[14] Wanle PAN, Heming CHEN, Yuchen HU. Three-channel integrated device for graphene electro-optic modulation and mode division multiplexin. Acta Photonica Sinica, 52, 0213001(2023).
[15] Jian SHEN, Chenglong FENG, Xun ZHANG et al. Research progress in optoelectronics integration technology based on piezoelectric effect (invited). Acta Photonica Sinica, 52, 1113001(2023).
[16] Xiaoteng LIU, Jijun FENG, Xinyao WU et al. Silicon waveguide based integrated optical phased array chips (invited). Acta Photonica Sinica, 49, 1149012(2020).
[17] Ting YU, Zhuo CHEN, Tiancheng LI et al. Precision measurement and theoretical analysis of SOI waveguide transmission loss and butt-coupling loss. Acta Photonica Sinica, 50, 0713001(2021).
[18] Yuewu YAN, Junming AN, Jiashun ZHANG et al. Chip of phase control arrays based on silica on silicon. Acta Photonica Sinica, 48, 0423001(2019).
[19] Xiaojie YIN, Jinghui WANG, Zhiyuan ZHENG et al. Characteristics of low coupling coefficient, narrow linewidth, high order Bragg grating based on SiO2 waveguide. Acta Photonica Sinica, 52, 0405001(2023).
[20] A FRIGG, A BOES, G REN et al. Low loss CMOS-compatible silicon nitride photonics utilizing reactive sputtered thin films. Optics Express, 27, 37795(2019).
[21] P MUÑOZ, G MICÓ, L A BRU et al. Silicon nitride photonic integration platforms for visible, near-infrared and midinfrared applications. Sensors, 17, 2088(2017).
[22] Lieyun HUANG, Yongjun XIANG, Shi SUN. Design of a Si-based 650 nm Enhanced Photodetector. Semiconductor Optoelectronics, 33, 483(2012).
[23] Baoquan LI, Fan LI, Yang CAO et al. Research on accuracy of photon arrival time labeling based on APD single photon detector. Acta Photonica Sinica, 52, 0734003(2023).
[24] Changming LIU, Xueshun SHI, Pengju ZHANG et al. Detection efficiency measurement of silicon single-photon avalanche detector traceable using standard detector. Acta Photonica Sinica, 48, 1248006(2019).
[25] L SNYMAN, Kaikai XU, J POLLEUX et al. Higher intensity SiAvLEDs in an RF bipolar process through carrier energy and carrier momentum engineering. IEEE Journal of Quantum Electronics, 51, 1-10(2015).
[26] Kaikai XU, Weifeng SUN, K OGUDO et al. Silicon avalanche based light emitting diodes and their potential integration into CMOS and RF integrated circuit technology. Optical Communication, 115-141(2014).
[27] L SNYMAN, J POLLEUX, K OGUDO et al. High-intensity 100-nW 5 GHz silicon avalanche LED utilizing carrier energy and momentum engineering, 8990, 89900L(2014).
[28] V KVEDER, M BADYLEVICH, W SCHROTER et al. Silicon light-emitting diodes based on dislocation-related luminescence. Physica Status Solidi(a), 202, 901(2005).
[29] J BUDE, N SANO, A YOSHII. Hot-carrier luminescence in Si. Physical Review B, 45, 5848-5856(1992).
[30] L SNYMAN, E BELLOTTI, M PLESSIS. Photonic transitions (1.4 eV-2.8 eV) in silicon p+np+ injection-avalanche CMOS LEDs as function of depletion layer profiling and defect engineering. IEEE Journal of Quantum Electronics, 46, 906-919(2010).
[31] A GORIN, A JAOUAD, E GRONDIN et al. Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties. Optics Express, 16, 13509-13516(2008).
Get Citation
Copy Citation Text
Yu TANG, Qian LUO, Siyang LIU, Lukas W SNYMAN, Kaikai XU. Polycrystalline Silicon Cascade Self-luminous Devices in Monolithic Sensing Systems[J]. Acta Photonica Sinica, 2024, 53(5): 0553113
Category: Special Issue for Microcavity Photonics
Received: Feb. 29, 2024
Accepted: Apr. 10, 2024
Published Online: Jun. 20, 2024
The Author Email: XU Kaikai (kaikaix@uestc.edu.cn)