BLASTING, Volume. 41, Issue 3, 240(2024)

Intelligent Classification of Blastability for Open-pit Uranium Mine based on Deep Learning

LIU Yu-long1... FU Hai-ying2, HUANG Lei1, LING Yang2, LIAN Meng2, LI Feng2, XIE Feng3 and DING De-xin2,* |Show fewer author(s)
Author Affiliations
  • 1China General Nuclear Power Group (CGN) Uranium Resources Co., Ltd., Beijing 100029, China
  • 2Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
  • 3North Blasting Technology Co., Ltd., Beijing 100097, China
  • show less
    References(6)

    [8] [8] HAN J, SHAO J. The application of SOM networks on rock blastability classification[C]//Proceedings of the Annual Conference on Explosives and Blasting Technique. ISEE; 1999, 2002, 1: 407-414.

    [9] [9] AZIMI Y, OSANLOO M, AAKBARPOUR-SHIRAZI M, et al. Prediction of the blastability designation of rock masses using fuzzy sets[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(7): 1126-1140.

    [10] [10] GHOSE A K. Design of drilling and blasting subsystems-a rock mass classification approach[C]//Proceedings of the symposium on mine planning and equipment selection. Rotterdam: Balkema, 1988: 335-40.

    [13] [13] WU S, YANG S, WANG Q. Classification of open pit iron mine rock mass blastability based on concept lattice and rough set[J]. Geotechnical and Geological Engineering, 2020, 38(1): 449-458.

    [14] [14] SALMI E F, SELLERS E J. A review of the methods to incorporate the geological and geotechnical characteristics of rock masses in blastability assessments for selective blast design[J]. Engineering Geology, 2021, 281(2): 105970-105970.

    [15] [15] XIAO S, LI K, DING X, et al. Rock mass blastability classification using fuzzy pattern recognition and the combination weight method[J]. Mathematical Problems in Engineering, 2015, 2015(7): 1-11.

    Tools

    Get Citation

    Copy Citation Text

    LIU Yu-long, FU Hai-ying, HUANG Lei, LING Yang, LIAN Meng, LI Feng, XIE Feng, DING De-xin. Intelligent Classification of Blastability for Open-pit Uranium Mine based on Deep Learning[J]. BLASTING, 2024, 41(3): 240

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 20, 2023

    Accepted: Dec. 20, 2024

    Published Online: Dec. 20, 2024

    The Author Email: De-xin DING (dingdxzzz@163.com)

    DOI:10.3963/j.issn.1001-487x.2024.03.028

    Topics