Optics and Precision Engineering, Volume. 29, Issue 11, 2649(2021)

Application of principal component algorithm in spindle thermal error modeling of CNC machine tools

Xin-yuan WEI1... Yu-chen CHEN1, En-ming MIAO2,*, Xu-gang FENG1 and Qiao-sheng PAN3 |Show fewer author(s)
Author Affiliations
  • 1School of Electrical and Information Engineering, Anhui University of Technology, Ma’anshan243032, China
  • 2School of Mechanical Engineering, Chongqing University of Technology, Chongqing400054, China
  • 3School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei20009, China
  • show less
    Figures & Tables(20)
    Experimental object: three axis vertical mechining center
    Position of displacement sensor
    Temperature curve of K1
    Temperature curve of K9
    Thermal errors in Z direction curves of each experiment
    The influence of the number of TSPs on the prediction effect of the model
    Structure of BP neural network
    Fitting accuracy results of four modeling algorithms
    Prediction accuracy results of four modeling algorithms
    Robustness results of four modeling algorithms
    Verification experiment V1~V3 spindle speed setting
    The curve of V1 predicted by K1 model
    Thermal error compensation measurement results
    • Table 1. Position and function of temperature sensor

      View table
      View in Article

      Table 1. Position and function of temperature sensor

      传感器安放位置作用
      T1~T5主轴前轴承测量电机发热
      T7,T8主轴外箱测量主轴发热
      T6,T9主轴电机测量主轴发热
      T10机床外壳测量环境温度
    • Table 2. Experimental parameters of each batch

      View table
      View in Article

      Table 2. Experimental parameters of each batch

      批次

      环境温度

      范围/℃

      主轴转速/r·min-1进给速度/mm·min-1
      K13.81-6.002 0001500
      K22.94-4.944 000
      K33.62-7.196 000
      K49.00-10.932 000
      K513.81-16.004 000
      K612.94-14.946 000
      K721.12-24.812 000
      K828.68-33.754 000
      K932.37-35.066 000
    • Table 3. Principal components and contribution rate of K1

      View table
      View in Article

      Table 3. Principal components and contribution rate of K1

      ZiZ1Z2Z3Z4Z5Z6Z7Z8Z9Z10
      Vi98.51.350.110.020.0100000
    • Table 4. Selection results of TSPs of each experiment(PCA)

      View table
      View in Article

      Table 4. Selection results of TSPs of each experiment(PCA)

      批次K1K2K3K4K5K6K7K8K9
      结果1,71,71,71,71,101,101,88,101,8
    • Table 5. Selection results of TSPs of each experiment(FCGC)

      View table
      View in Article

      Table 5. Selection results of TSPs of each experiment(FCGC)

      批次K1K2K3K4K5K6K7K8K9
      结果1,101,101,101,81,101,101,81,101,10
    • Table 6. Model coefficient of MLR of each batch experiment

      View table
      View in Article

      Table 6. Model coefficient of MLR of each batch experiment

      批次模型系数
      b0b1b2
      K1-3.676.06-3.97
      K2-3.836.17-4.82
      ……
      K84.499.39-11.14
      K9-3.098.05-2.89
    • Table 7. Model coefficient of ridge regression of each batch experiment

      View table
      View in Article

      Table 7. Model coefficient of ridge regression of each batch experiment

      批次模型系数
      b0b1b2
      K16.2581.8111.773
      K214.4741.6331.644
      ……
      K86.6562.2442.348
      K914.9051.7751.850
    Tools

    Get Citation

    Copy Citation Text

    Xin-yuan WEI, Yu-chen CHEN, En-ming MIAO, Xu-gang FENG, Qiao-sheng PAN. Application of principal component algorithm in spindle thermal error modeling of CNC machine tools[J]. Optics and Precision Engineering, 2021, 29(11): 2649

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Micro/Nano Technology and Fine Mechanics

    Received: Apr. 2, 2021

    Accepted: --

    Published Online: Dec. 10, 2021

    The Author Email: MIAO En-ming (miaoem@163.com)

    DOI:10.37188/OPE.20212911.2649

    Topics