Optics and Precision Engineering, Volume. 32, Issue 12, 1902(2024)

Cascade residual-optimized image super-resolution reconstruction in Transformer network

Jianpu LIN1...2, Zhencheng WU1,2, Kunfu WANG1, Zhixian LIN1,2,3, Tailiang GUO2,3, and Shanling LIN12,* |Show fewer author(s)
Author Affiliations
  • 1School of Advanced Manufacturing, Fuzhou University, Quanzhou362252, China
  • 2Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou350116, China
  • 3College of Physics and Telecommunication Engineering, Fuzhou University, Fuzhou50116, China
  • show less
    References(34)

    [1] [1] 温剑, 邵剑飞, 刘杰, 等. 多维注意力机制与选择性特征融合的图像超分辨率重建[J]. 光学 精密工程, 2023, 31(17): 2584-2597. doi: 10.37188/ope.20233117.2584WENJ, SHAOJ F, LIUJ, et al. Multidimensional attention mechanism and selective feature fusion for image super-resolution reconstruction[J]. Opt. Precision Eng., 2023, 31(17): 2584-2597.(in Chinese). doi: 10.37188/ope.20233117.2584

    [2] [2] 陈豪, 夏振平, 程成, 等. 基于Transformer-CNN的轻量级图像超分辨率重建网络[J]. 计算机应用, 2024, 44(1): 292-299.CHENH, XIAZ P, CHENGC, et al. Lightweight image super-resolution reconstruction network based on Transformer-CNN[J]. Journal of Computer Applications, 2024, 44(1): 292-299.(in Chinese)

    [3] [3] 寇旗旗, 李超, 程德强, 等. 基于注意力和宽激活密集残差网络的图像超分辨率重建[J]. 光学 精密工程, 2023, 31(15): 2273-2286. doi: 10.37188/ope.20233115.2273KOUQ Q, LIC, CHENGD Q, et al. Image super-resolution reconstruction based on attention and wide-activated dense residual network[J]. Opt. Precision Eng., 2023, 31(15): 2273-2286.(in Chinese). doi: 10.37188/ope.20233115.2273

    [4] C DONG, C C LOY, K HE et al. Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell, 38, 295-307(2016).

    [6] L SUN, J X DONG, J H TANG et al. Spatially-adaptive Feature Modulation for Efficient Image Super-resolution, 13144-13153(2023).

    [7] C W TIAN, X Y ZHANG, Q ZHANG et al. Image super-resolution via dynamic network. CAAI Transactions on Intelligence Technology(2023).

    [8] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(2016).

    [9] Z LIU, Y T LIN, Y CAO et al. Swin transformer: hierarchical vision transformer using shifted windows, 9992-10002(2021).

    [10] J Y LIANG, J Z CAO, G L SUN et al. SwinIR: image restoration using swin transformer, 1833-1844(2021).

    [11] M Y DING, B XIAO, N CODELLA et al. DaViT: dual attention vision transformers, 74-92(2022).

    [12] S W ZAMIR, A ARORA, S KHAN et al. Restormer: efficient transformer for high-resolution image restoration, 5718-5729(2022).

    [13] O RONNEBERGER, P FISCHER, T BROX. U-net Convolutional Networks for Biomedical Image Segmentation. Lecture Notes in Computer Science, 234-241(2015).

    [14] J HU, L SHEN, G SUN. Squeeze-and-excitation networks, 7132-7141(2018).

    [15] J PARK, J Y LEE et al. CBAM: Convolutional block attention module, 3-19(2018).

    [17] C SZEGEDY, W LIU, Y Q JIA et al. Going deeper with convolutions, 1-9(2015).

    [18] G HUANG, Z LIU, L VAN DER MAATEN et al. Densely connected convolutional networks, 2261-2269(2017).

    [19] W Z SHI, J CABALLERO, F HUSZÁR et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, 1874-1883(2016).

    [20] E AGUSTSSON, R TIMOFTE. NTIRE 2017 Challenge on single image super-resolution: dataset and study, 21, 126-135(2017).

    [21] Z WANG, A C BOVIK, H R SHEIKH et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600-612(2004).

    [22] B KANG, K A SOHN. Fast, Accurate, and lightweight super-resolution with cascading residual network, 256-272(2018).

    [23] W S LAI, J B HUANG, N AHUJA et al. Deep laplacian pyramid networks for fast and accurate super-resolution, 5835-5843(2017).

    [24] Y TAI, J YANG, X M LIU et al. MemNet: a persistent memory network for image restoration, 4549-4557(2017).

    [25] Z HUI, X B GAO, Y C YANG et al. Lightweight image super-resolution with information multi-distillation network, 2024-2032(2019).

    [26] F Y KONG, M X LI, S W LIU et al. Residual local feature network for efficient super-resolution, 765-775(2022).

    [27] Z S LU, J C LI, H LIU et al. Transformer for single image super-resolution, 456-465(2022).

    [29] A DOSOVITSKIY, L BEYER, A KOLESNIKOV et al. An image is worth 16x16 words: transformers for image recognition at scale. ArXiv e-Prints(2020).

    [30] K HAN, A XIAO, E WU et al. Transformer in transformer, 34, 15908-15919(2021).

    [31] T C LIU, K A LEE, Q Q WANG et al. Golden gemini is all you need: finding the sweet spots for speaker verification. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 32, 2324-2337(2023).

    [32] C W TIAN, M H ZHENG, W M ZUO et al. A cross Transformer for image denoising. Information Fusion, 102, 102043(2024).

    [33] Z CHEN, Y L ZHANG, J J GU et al. Dual aggregation transformer for image super-resolution, 12278-12287(2023).

    [34] Y L ZHANG, K P LI, K LI et al. Image super-resolution using very deep residual channel attention networks, 294-310(2018).

    Tools

    Get Citation

    Copy Citation Text

    Jianpu LIN, Zhencheng WU, Kunfu WANG, Zhixian LIN, Tailiang GUO, Shanling LIN. Cascade residual-optimized image super-resolution reconstruction in Transformer network[J]. Optics and Precision Engineering, 2024, 32(12): 1902

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 13, 2023

    Accepted: --

    Published Online: Aug. 28, 2024

    The Author Email: LIN Shanling (sllin@fzu.edu.cn)

    DOI:10.37188/OPE.20243212.1902

    Topics