Spectroscopy and Spectral Analysis, Volume. 38, Issue 12, 3883(2018)
Random Forests-Based Hybrid Feature Selection Algorithm for Soil Potassium Content Inversion Using Hyperspectral Technology
[1] [1] Gupta S, Yadav B S, Raj U, et al. Front in Plant Science, 2017, 8(1025): 1.
[3] [3] Viscarra Rossel R A, Behrens T, Ben-Dor E, et al. Earth-Science Reviews, 2016, 155: 198.
[4] [4] Vohland M, Ludwig M, Thiele-Bruhn S, et al. Geoderma, 2014, 223-225: 88.
[5] [5] Iznaga A C, Orozco, M R, Alcantara E A, et al. Biosystems Engineering, 2014, 125: 105.
[7] [7] Mehmood T, Liland K H, Snipen L, et al. Chemometricsand Intelligent Laboratory Systems, 2012, 118: 62.
[9] [9] Jia S, Yang X, Zhang J, et al. Soil Science, 2014, 179(4): 211.
[10] [10] Ben Ishak A. Intelligent Data Analysis, 2016, 20(1): 83.
[11] [11] Leo Breiman. Random forests. Machine Learning, 2001, 45(1): 5.
[12] [12] Yu X, Liu Q, Wang Y B, et al. Catena, 2016, 137: 340.
[13] [13] Wang X M, Chen Y Y, Guo L, et al. Remote Sensing, 2017, 9: 201.
[14] [14] Li H D, Xu Q S, Liang Y Z. Peer J Prepr, 2014, 2: e190v191.
[15] [15] Huang N T, Lu G B, Xu D G. Energies, 2016, 9: 767.
[16] [16] Leo Breiman. Bagging Predictors. Machine Learning, 1996, 24: 123.
Get Citation
Copy Citation Text
WANG Xuan-hui, ZHENG Xi-lai, HAN Zhong-zhi, WANG Xuan-li, WANG Juan. Random Forests-Based Hybrid Feature Selection Algorithm for Soil Potassium Content Inversion Using Hyperspectral Technology[J]. Spectroscopy and Spectral Analysis, 2018, 38(12): 3883
Received: Nov. 7, 2017
Accepted: --
Published Online: Dec. 16, 2018
The Author Email: Xuan-hui WANG (margaretxuan@aliyun.com)