Journal of Inorganic Materials, Volume. 35, Issue 2, 173(2020)
[1] BUSER D, SCHENK R K, STEINEMANN S et al. Influence of surface characteristics on bone integration of titanium implants. a histomorphometric study in miniature pigs[J]. Journal of Biomedical Materials Research, 25, 889-902(1991).
[2] DABROWSKI B, SWIESZKOWSKI W, GODLINSKI D et al. Highly porous titanium scaffolds for orthopaedic applications[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 95B, 53-61(2010).
[3] CARINE V, YANN C, DIDIER L O et al. Surface modification of titanium with phosphonic acid to improve bone bonding: characterization by XPS and ToF-SIMS[J]. Langmuir, 18, 2582-2589(2002).
[4] WANG X H, LI J S, HU R et al. Mechanical properties and bioactive surface modification
[5] DAS K, BALLA V K, BANDYOPADHYAY A et al. Surface modification of laser-processed porous titanium for load-bearing implants[J]. Scripta Materialia, 59, 822-825(2008).
[6] RAKHMATIA Y D, AYUKAWA Y, FURUHASHI A et al. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications[J]. J. Prosthodont. Res., 57, 3-14(2013).
[7] MARBACHER S, ANDRES R H, FATHI A R et al. Primary reconstruction of open depressed skull fractures with titanium mesh[J]. Journal of Craniofacial Surgery, 19, 490-495(2008).
[8] SCH N R, METZGER M C, ZIZELMANN C et al. Individually preformed titanium mesh implants for a true-to-original repair of orbital fractures[J]. International Journal of Oral & Maxillofacial Surgery, 35, 990-995(2006).
[9] NAKASE H, PARK Y S, KIMURA H et al. Complications and long-term follow-up results in titanium mesh cage reconstruction after cervical corpectomy[J]. Journal of Spinal Disorders & Techniques, 19, 353-357(2006).
[10] MARTIN M P, OLSON S. Post-operative complications with titanium mesh[J]. Journal of Clinical Neuroscience, 16, 1080-1081(2009).
[11] CARRAD A. Development of bioactive hydroxyapatite coatings on titanium alloys[J]. Key Engineering Materials, 533, 183-193(2012).
[12] LANGELIER B, WANG X, GRANDFIELD K. Atomic scale chemical tomography of human bone[J]. Scientific Reports, 7, 39958(2017).
[13] KANE R, MA P X. Mimicking the nanostructure of bone matrix to regenerate bone[J]. Materials Today, 16, 418-423(2013).
[14] HABIBOVIC P, YUAN H, VAN D D M et al. Relevance of osteoinductive biomaterials in critical-sized orthotopic defect[J]. Journal of Orthopaedic Research, 24, 867-876(2010).
[15] LI C, VEPARI C, JIN H J et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering[J]. Biomaterials, 27, 3115-3124(2006).
[16] MURPHY C M, SCHINDELER A, GLEESON J P et al. A collagen- hydroxyapatite scaffold allows for binding and co-delivery of recombinant bone morphogenetic proteins and bisphosphonates[J]. Acta Biomaterialia, 10, 2250-2258(2014).
[17] GUO X, PARK H, YOUNG S et al. Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model[J]. Acta Biomaterialia, 6, 39-47(2010).
[18] CHEN P C, XU Z K. Mineral-coated polymer membranes with superhydrophilicity and underwater superoleophobicity for effective oil/water separation[J]. Sci. Rep., 3, 2776(2013).
[19] USINSKAS P, STANKEVICIUTE Z, BEGANSKIENE A et al. Sol-Gel derived porous and hydrophilic calcium hydroxyapatite coating on modified titanium substrate[J]. Surface & Coatings Technology, 307, 935-940(2016).
[20] CHA C, LIECHTY W B, KHADEMHOSSEINI A et al. Designing biomaterials to direct stem cell fate[J]. ACS Nano, 6, 9353-9358(2012).
[21] LUTOLF M P, GILBERT P M, BLAU H M. Designing materials to direct stem-cell fate[J]. Nature, 462, 433-441(2009).
[22] DOM NGUEZ-TRUJILLO C, PE N E, CHICARDI E et al. Sol-Gel deposition of hydroxyapatite coatings on porous titanium for biomedical applications[J]. Surface & Coatings Technology, 333, 158-162(2017).
[23] PENG H, USAS A, OLSHANSKI A et al. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis[J]. Journal of Bone & Mineral Research, 20, 2017-2027(2010).
[24] CHEN L, JIANG W, HUANG J et al. Insulin-like growth factor 2(IGF-2) potentiates BMP-9-induced osteogenic differentiation and bone formation[J]. Journal of Bone & Mineral Research, 47, S432-S433(2010).
[25] BOSE S, TARAFDER S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review[J]. Acta Biomaterialia, 8, 1401-1421(2012).
[26] KHAN S N, BOSTROM M P, LANE J M. Bone growth factors[J]. Orthopedic Clinics of North America, 31, 375-387(2000).
[27] WANG Z, CHEN L, XU J et al. Bioadhesive microporous architectures by self-assembling polydopamine microcapsules for biomedical applications[J]. Chemistry of Materials, 27, 848-856(2015).
[28] ZHANG C D, XIAO D Q, FU Y K et al. Fabrication of nanostructured hierarchical coatings composed of calcium phosphate/ titanate on titanium substrate[J]. Key Engineering Materials, 575-576, 253-258(2014).
[29] ZHAO H, DONG W, ZHENG Y et al. The structural and biological properties of hydroxyapatite-modified titanate nanowire scaffolds[J]. Biomaterials, 32, 5837-5846(2011).
[30] KOUTSOPOULOS S. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods[J]. Journal of Biomedical Materials Research Part A, 62, 600-612(2002).
[31] PALAZZO B, IAFISCO M, LAFORGIA M et al. Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties[J]. Advanced Functional Materials, 17, 2180-2188(2010).
[32] CAI L, LIN D, CHAI Y et al. MBG scaffold containing chitosan microspheres as binary delivery system of IL-8 and BMP-2 for bone regeneration[J]. Journal of Materials Chemistry B, 6, 4453-4465(2018).
[33] LU X, WANG Y B, LIU Y R et al. Preparation of HA/chitosan composite coatings on alkali treated titanium surfaces through Sol-Gel techniques[J]. Materials Letters, 61, 3970-3973(2007).
[34] PANG D, HE L, WEI L et al. Preparation of a beta-tricalcium phosphate nanocoating and its protein adsorption behaviour by quartz crystal microbalance with dissipation technique[J]. Colloids and Surfaces B: Biointerfaces, 162, 1-7(2018).
[35] DONG X, WANG Q, WU T et al. Understanding adsorption- desorption dynamics of BMP-2 on hydroxyapatite(001) surface[J]. Biophysical journal, 93, 750-759(2007).
[36] WALLWORK M L, KIRKHAM J, ZHANG J et al. Binding of matrix proteins to developing enamel crystals: an atomic force microscopy study[J]. Langmuir, 17, 2508-2513(2001).
[37] ZHU X, FAN H, LI D et al. Protein adsorption and zeta potentials of a biphasic calcium phosphate ceramic under various conditions[J]. J. Biomed. Mater. Res. B App.l Biomater., 82, 65-73(2007).
[38] ZHOU H, WU T, DONG X et al. Adsorption mechanism of BMP-7 on hydroxyapatite(001) surfaces[J]. Biochem. Biophys. Res. Commun., 361, 91-96(2007).
[39] KANDORI K, FUDO A, ISHIKAWA T. Study on the particle texture dependence of protein adsorption by using synthetic micrometer- sized calcium hydroxyapatite particles[J]. Colloids and Surfaces B: Biointerfaces, 24, 145-153(2002).
[40] BOIX T, GOMEZ-MORALES J, TORRENT-BURGUES J et al. Adsorption of recombinant human bone morphogenetic protein rhBMP-2m onto hydroxyapatite[J]. Journal of Inorganic Biochemistry, 99, 1043-1050(2005).
[41] FU Y K, ZHOU X, XIAO D Q et al. Influence of micro-nano structure of haydroxyapatite particles on protein adsorption[J]. Journal of Inorganic Materials, 30, 523-528(2015).
[42] FU Y K, LI X Z, XIA X et al. Effect of zeta potential of hydroxyapatite on protein adsorption[J]. Progress in Modern Biomedicine, 16, 3610-3613(2016).
[43] IMAMURA T, KAITO T. Homeostasis and disorder of musculoskeletal system.BMP and TGF signaling and locomotive tissues[J]. Clinical Calcium, 28, 313(2018).
Get Citation
Copy Citation Text
Ya-Kang FU, Jie WENG, Yao-Wen LIU, Ke-Hong ZHANG.
Category: RESEARCH PAPER
Received: Mar. 25, 2019
Accepted: --
Published Online: Jan. 27, 2021
The Author Email: