Acta Optica Sinica, Volume. 43, Issue 23, 2300001(2023)

Research Progress of Vergence-Accommodation Conflict in Near-Eye Display Based on Augmented Reality

Shulong Wang1, Zijian Lin2, Shixiang Xu1、*, Yu Wang3, Kun Yang3, Yidan Huang2, and Enguo Chen2、**
Author Affiliations
  • 1College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong , China
  • 2National and Local United Engineering Laboratory of Flat Panel Display Technology, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, Fujian , China
  • 3Nanyang Lida Optic-electronics Co., Ltd., Nanyang 473003, Henan , China
  • show less
    References(165)

    [1] Azuma R, Baillot Y, Behringer R et al. Recent advances in augmented reality[J]. IEEE Computer Graphics and Applications, 21, 34-47(2001).

    [2] Carmigniani J, Furht B, Anisetti M et al. Augmented reality technologies, systems and applications[J]. Multimedia Tools and Applications, 51, 341-377(2011).

    [3] Sutherland I E. A head-mounted three dimensional display[C], 757-764(1968).

    [4] Sutherland I E. Computer displays[J]. Scientific American, 222, 56-81(1970).

    [5] Lu F, Hua J Y, Zhou F B et al. Pixelated volume holographic optical element for augmented reality 3D display[J]. Optics Express, 30, 15929-15938(2022).

    [6] Zhan T, Yin K, Xiong J H et al. Augmented reality and virtual reality displays: perspectives and challenges[J]. iScience, 23, 101397(2020).

    [7] Abrash M. Creating the future: augmented reality, the next human-machine interface[C], 1-2(2022).

    [8] Lu Y Q, Li Y. Planar liquid crystal polarization optics for near-eye displays[J]. Light: Science & Applications, 10, 122(2021).

    [9] Shin K S, Choi M H, Jang J et al. Waveguide-type see-through dual focus near-eye display with a polarization grating[J]. Optics Express, 29, 40294-40309(2021).

    [10] Ni D W, Cheng D W, Liu Y E et al. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization[J]. Optics Express, 30, 24523-24543(2022).

    [11] Chen C P, Cui Y P, Chen Y et al. Near-eye display with a triple-channel waveguide for metaverse[J]. Optics Express, 30, 31256-31266(2022).

    [12] Wang S L, Anthony Surman P, Sun X W et al. Objective measurement technique for mitigating the augmented-reality geometric waveguide double-image problem[J]. Optics Continuum, 1, 2319-2335(2022).

    [13] Cheng D W, Wang Q W, Wei L et al. Design method of a wide-angle AR display with a single-layer two-dimensional pupil expansion geometrical waveguide[J]. Applied Optics, 61, 5813-5822(2022).

    [14] Weng J C, Li H F, Wu R M et al. Single-image-source binocular waveguide display based on polarization volume gratings and lenses[J]. Optics Letters, 48, 2050-2053(2023).

    [15] Mei Y, Peng F, Sun M et al. Augmented reality near-eye display system based on cylindrical holographic waveguide[J]. Laser & Optoelectronics Progress, 59, 2011012(2022).

    [16] Mei Y, Peng F, Xia X X et al. Design of near-eye display with cylindrical holographic waveguide[J]. Proceedings of SPIE, 11898, 118980M(2021).

    [17] Liu Z Y, Pan C, Pang Y J et al. A full-color near-eye augmented reality display using a tilted waveguide and diffraction gratings[J]. Optics Communications, 431, 45-50(2019).

    [18] Liu Z Y, Pang Y J, Pan C et al. Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics[J]. Optics Express, 25, 30720-30731(2017).

    [19] Chen X W, Cao Y, Xue J L et al. Optimal design of optical modules for double free-form surface head-up display systems[J]. Laser & Optoelectronics Progress, 60, 0922001(2023).

    [20] Applin S A, Flick C. Facebook’s Project Aria indicates problems for responsible innovation when broadly deploying AR and other pervasive technology in the Commons[J]. Journal of Responsible Technology, 5, 100010(2021).

    [21] Hoffman D M, Girshick A R, Akeley K et al. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue[J]. Journal of Vision, 8, 33(2008).

    [22] Bharadwaj S R, Candy T R. Accommodative and vergence responses to conflicting blur and disparity stimuli during development[J]. Journal of Vision, 9, 4(2009).

    [23] Watt S J, Akeley K, Ernst M O et al. Focus cues affect perceived depth[J]. Journal of Vision, 5, 7(2005).

    [24] Qin Z, Zhang Y H, Yang B R. Interaction between sampled rays’ defocusing and number on accommodative response in integral imaging near-eye light field displays[J]. Optics Express, 29, 7342-7360(2021).

    [25] Qin Z, Lin S M, Luo K T et al. Dual-focal-plane augmented reality head-up display using a single picture generation unit and a single freeform mirror[J]. Applied Optics, 58, 5366-5374(2019).

    [26] Lambooij M, Fortuin M, Heynderickx I et al. Visual discomfort and visual fatigue of stereoscopic displays: a review[J]. Journal of Imaging Science and Technology, 53, 30201(2009).

    [27] Reichelt S, Häussler R, Fütterer G et al. Depth cues in human visual perception and their realization in 3D displays[J]. Proceedings of SPIE, 7690, 76900B(2010).

    [28] Okada T, Miyamoto T, Ito S I et al. Research on blinking-luminescence travel support for visually impaired persons[M]. Stanton N A. Advances in human aspects of transportation, 597, 319-324(2018).

    [29] Kramida G. Resolving the vergence-accommodation conflict in head-mounted displays[J]. IEEE Transactions on Visualization and Computer Graphics, 22, 1912-1931(2016).

    [30] Hung G K, Ciuffreda K J, Rosenfield M. Proximal contribution to a linear static model of accommodation and vergence[J]. Ophthalmic and Physiological Optics, 16, 31-41(1996).

    [31] Suryakumar R, Meyers J P, Irving E L et al. Vergence accommodation and monocular closed loop blur accommodation have similar dynamic characteristics[J]. Vision Research, 47, 327-337(2007).

    [32] Dodgson N A. Autostereoscopic 3D displays[J]. Computer, 38, 31-36(2005).

    [33] Li Z Y, Gao C, Li H F et al. Portable autostereoscopic display based on multi-directional backlight[J]. Optics Express, 30, 21478-21490(2022).

    [34] Zhou F, Hua J Y, Shi J C et al. Pixelated blazed gratings for high brightness multiview holographic 3D display[J]. IEEE Photonics Technology Letters, 32, 283-286(2020).

    [35] Hua J Y, Yi D H, Qiao W et al. Multiview holographic 3D display based on blazed Fresnel DOE[J]. Optics Communications, 472, 125829(2020).

    [36] Wan W Q, Qiao W, Huang W B et al. Multiview holographic 3D dynamic display by combining a nano-grating patterned phase plate and LCD[J]. Optics Express, 25, 1114-1122(2017).

    [37] Wan W Q, Qiao W, Pu D L et al. Holographic sampling display based on metagratings[J]. iScience, 23, 100773(2020).

    [38] Bando T, Iijima A, Yano S. Visual fatigue caused by stereoscopic images and the search for the requirement to prevent them: a review[J]. Displays, 33, 76-83(2012).

    [39] Shibata T, Kawai T, Ohta K et al. Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence[J]. Journal of the Society for Information Display, 13, 665-671(2005).

    [40] Hua H, Javidi B. A 3D integral imaging optical see-through head-mounted display[J]. Optics Express, 22, 13484-13491(2014).

    [41] Condino S, Carbone M, Piazza R et al. Perceptual limits of optical see-through visors for augmented reality guidance of manual tasks[J]. IEEE Transactions on Biomedical Engineering, 67, 411-419(2020).

    [42] Konrad R, Cooper E A, Wetzstein G. Novel optical configurations for virtual reality: evaluating user preference and performance with focus-tunable and monovision near-eye displays[C], 1211-1220(2016).

    [43] Shibata T, Kim J, Hoffman D M et al. Visual discomfort with stereo displays: effects of viewing distance and direction of vergence-accommodation conflict[J]. Proceedings of SPIE, 7863, 78630P(2011).

    [44] Zhang Q T, Piao Y R, Ma S N et al. Design, analysis and optimization of a waveguide-type near-eye display using a pin-mirror array and a concaved reflector[J]. Optics Express, 30, 33208-33221(2022).

    [45] Hua H. Enabling focus cues in head-mounted displays[J]. Proceedings of the IEEE, 105, 805-824(2017).

    [46] Westheimer G. The Maxwellian view[J]. Vision Research, 6, 669-682(1966).

    [47] Shrestha P K, Pryn M J, Jia J et al. Accommodation-free head mounted display with comfortable 3D perception and an enlarged eye-box[J]. Research, 2019, 9273723(2019).

    [48] Liao C D, Tsai J C. The evolution of MEMS displays[J]. IEEE Transactions on Industrial Electronics, 56, 1057-1065(2009).

    [49] Hofmann U, Janes J, Quenzer H J. High-Q MEMS resonators for laser beam scanning displays[J]. Micromachines, 3, 509-528(2012).

    [50] Liu S X, Li Y, Zhou P C et al. Reverse-mode PSLC multi-plane optical see-through display for AR applications[J]. Optics Express, 26, 3394-3403(2018).

    [51] Chang C L, Cui W, Gao L A. Holographic multiplane near-eye display based on amplitude-only wavefront modulation[J]. Optics Express, 27, 30960-30970(2019).

    [52] Liu C, Wang D, Wang Q H. Holographic display system with adjustable viewing angle based on multi-focus optofluidic lens[J]. Optics Express, 27, 18210-18221(2019).

    [53] Xia X X, Guan Y Q, State A et al. Towards a switchable AR/VR near-eye display with accommodation-vergence and eyeglass prescription support[J]. IEEE Transactions on Visualization and Computer Graphics, 25, 3114-3124(2019).

    [54] Bhowmick A K, Jamali A, Bryant D et al. 31-5: student paper: liquid crystal based 5 cm adaptive focus lens to solve accommodation-convergence (AC) mismatch issue of AR/VR/3D displays[J]. SID Symposium Digest of Technical Papers, 52, 410-413(2021).

    [55] Chang J H R, Kumar B V K V, Sankaranarayanan A C. Towards multifocal displays with dense focal stacks[J]. ACM Transactions on Graphics, 37, 198(2018).

    [56] Liu L L, Ye Q, Pang Z Y et al. Polarization enlargement of FOV in Super Multi-view display based on near-eye timing-apertures[J]. Optics Express, 30, 1841-1859(2022).

    [57] Ueno T, Takaki Y. Super multi-view near-eye display to solve vergence-accommodation conflict[J]. Optics Express, 26, 30703-30715(2018).

    [58] Wang L, Li Y, Liu S X et al. Large depth of range maxwellian-viewing SMV near-eye display based on a Pancharatnam-Berry optical element[J]. IEEE Photonics Journal, 14, 7001607(2021).

    [59] Gao C, Liu J, Li X et al. Accurate compressed look up table method for CGH in 3D holographic display[J]. Optics Express, 23, 33194-33204(2015).

    [60] Bartelt H. Computer-generated holographic component with optimum light efficiency[J]. Applied Optics, 23, 1499-1502(1984).

    [61] Wang W S, Yang F R, Shui X H et al. Wirtinger-derivative-based tilted plane diffraction propagation for holographic near-eye displays[J]. Proceedings of SPIE, 12318, 1231814(2022).

    [62] Zhang Z Q, Liu J A, Duan X H et al. Enlarging field of view by a two-step method in a near-eye 3D holographic display[J]. Optics Express, 28, 32709-32720(2020).

    [63] Gao Q K, Liu J, Duan X H et al. Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter[J]. Optics Express, 25, 8412-8424(2017).

    [64] Maimone A, Georgiou A, Kollin J S. Holographic near-eye displays for virtual and augmented reality[J]. ACM Transactions on Graphics, 36, 85.

    [65] Zhang X, Wang Z, Tu K F et al. Research progress of retinal projection displays[J]. Chinese Journal of Liquid Crystals and Displays, 37, 639-646(2022).

    [66] Lin J G, Cong Q, Xu C et al. Design of MEMS laser scanning retinal projection display system[J]. Acta Optica Sinica, 37, 1222001(2017).

    [67] Takaki Y, Fujimoto N. Flexible retinal image formation by holographic Maxwellian-view display[J]. Optics Express, 26, 22985-22999(2018).

    [68] Reitterer J, Chen Z, Balbekova A et al. Ultra-compact micro-electro-mechanical laser beam scanner for augmented reality applications[J]. Proceedings of SPIE, 11765, 1176504(2021).

    [69] Boni N, Carminati R, Mendicino G et al. Piezoelectric MEMS mirrors for the next generation of small form factor AR glasses[J]. Proceedings of SPIE, 12013, 1201305(2022).

    [70] Park S, Wakelin M, Malea D et al. Low-power, small-form-factor angle sensing circuit for an electrostatic, quasi-static MEMS mirror in AR applications[J]. Proceedings of SPIE, 11931, 119310M(2022).

    [71] Akutsu K, Seino S, Ogawa Y et al. A compact retinal scan near-eye display[C](2019).

    [72] Chellappan K V, Erden E, Urey H. Laser-based displays: a review[J]. Applied Optics, 49, F79-F98(2010).

    [73] Ando T, Yamasaki K, Okamoto M et al. Head-mounted display using a holographic optical element[J]. Proceedings of SPIE, 3293, 183-189(1998).

    [74] von Waldkirch M, Lukowicz P, Tröster G. Spectacle-based design of wearable see-through display for accommodation-free viewing[M]. Ferscha A, Mattern F. Pervasive computing, 3001, 106-123(2004).

    [75] Yuuki A, Itoga K, Satake T. A new Maxwellian view display for trouble-free accommodation[J]. Journal of the Society for Information Display, 20, 581-588(2012).

    [76] Kim S B, Park J H. Optical see-through Maxwellian near-to-eye display with an enlarged eyebox[J]. Optics Letters, 43, 767-770(2018).

    [77] Xiong J H, Tan G J, Zhan T et al. Breaking the field-of-view limit in augmented reality with a scanning waveguide display[J]. OSA Continuum, 3, 2730-2740(2020).

    [78] Wang Z, Zhang X, Tu K F et al. Lensless full-color holographic Maxwellian near-eye display with a horizontal eyebox expansion[J]. Optics Letters, 46, 4112-4115(2021).

    [79] Choi M H, Park J H. Optical see-through Maxwellian-view display with axial focal spot steering using focus-tunable lens[C], C2G_3(2020).

    [80] Zhang S J, Zhang Z Q, Liu J A. Adjustable and continuous eyebox replication for a holographic Maxwellian near-eye display[J]. Optics Letters, 47, 445-448(2022).

    [81] Van Kessel P F, Hornbeck L J, Meier R E et al. A MEMS-based projection display[J]. Proceedings of the IEEE, 86, 1687-1704(1998).

    [82] Sampsell J. An overview of Texas Instruments digital micromirror device (DMD) and its application to projection display[J]. Texas Instruments Incorporated, 24, 112-115(1993).

    [83] Hornbeck L J. Current status of the digital micromirror device (DMD) for projection television applications[C], 381-384(2002).

    [84] Cakmakci O, Rolland J. Head-worn displays: a review[J]. Journal of Display Technology, 2, 199-216(2006).

    [85] Liu S, Cheng D W, Hua H. An optical see-through head mounted display with addressable focal planes[C], 33-42(2008).

    [86] Huang Y G, Hsiang E L, Deng M Y et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives[J]. Light: Science & Applications, 9, 105(2020).

    [87] Liu X H, Wu Y P, Malhotra Y et al. Submicron full-color LED pixels for microdisplays and micro-LED main displays[J]. Journal of the Society for Information Display, 28, 410-417(2020).

    [88] Liu Y Z, Xia T W, Du A C et al. Omnidirectional color shift suppression of full-color micro-LED displays with enhanced light extraction efficiency[J]. Optics Letters, 48, 1650-1653(2023).

    [89] Jiang H N, Lin Z B, Li Y et al. Design of self-luminous pico-projection optical engine based on a quantum-dot color converted micro-LED[J]. Proceedings of SPIE, 12448, 1244815(2022).

    [90] Zhou Z P, Li Y, Yan Y G et al. Current situation and trend of Micro-LED application in near-eye display[J]. Chinese Journal of Liquid Crystals and Displays, 37, 661-679(2022).

    [91] Zhang X, Chen A L, Yang T et al. Tripling light conversion efficiency of μLED displays by light recycling black matrix[J]. IEEE Photonics Journal, 14, 7014207(2022).

    [92] Du Z F, Feng H J, Liu Y Z et al. Localized surface plasmon coupling nanorods with graphene as a transparent conductive electrode for micro light-emitting diodes[J]. IEEE Electron Device Letters, 43, 2133-2136(2022).

    [93] Ren X X, Zhang X A, Xie H X et al. Perovskite quantum dots for emerging displays: recent progress and perspectives[J]. Nanomaterials, 12, 2243(2022).

    [94] Wang C H, Cai J H, Ye Y Y et al. Full-visible-spectrum perovskite quantum dots by anion exchange resin assisted synthesis[J]. Nanophotonics, 11, 1355-1366(2022).

    [95] Chen E G, Lin J Y, Yang T et al. Asymmetric quantum-dot pixelation for color-converted white balance[J]. ACS Photonics, 8, 2158-2165(2021).

    [96] Deng L W, Zhang X, Yan Y G et al. Ambient contrast ratio of quantum-dot color-converted micro-LED displays[J]. Results in Physics, 48, 106462(2023).

    [97] Li P K. LCOS and AR/VR[J]. Information Display, 34, 12-15(2018).

    [98] Chen E G, Yu F H. Design of an elliptic spot illumination system in LED-based color filter–liquid-crystal-on-silicon pico projectors for mobile embedded projection[J]. Applied Optics, 51, 3162-3170(2012).

    [99] Melena N W, Wiersma J T. Pixel size requirements for AR/MR[J]. Proceedings of SPIE, 11765, 1176505(2021).

    [100] Chen E G, Liu P, Yu F H. Synchronized parameter optimization of the double freeform lenses illumination system used for the CF-LCoS pico-projectors[J]. Optics & Laser Technology, 44, 2080-2087(2012).

    [101] Wu Y J, Pan C, Gao Y B et al. Design of ultra-compact augmented reality display based on grating waveguide with curved variable-period grating[J]. Optics Communications, 529, 128980(2023).

    [102] Kress B, Pace M, Chatterjee I. 5-3: invited Paper: towards Cost-Effective ARIMR Display Systems: the Emergence of an Industrial Hardware Ecosystem allowing low cost mass production[J]. SID Symposium Digest of Technical Papers, 51, 45-48(2020).

    [103] Robbins S J, Glik E, He S H et al. MEMS laser scanner having enlarged FOV[P].

    [109] Yin K, Hsiang E L, Zou J Y et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications[J]. Light: Science & Applications, 11, 161(2022).

    [110] Zhan T, Xiong J H, Zou J Y et al. Multifocal displays: review and prospect[J]. PhotoniX, 1, 1-31(2020).

    [111] Rolland J P, Krueger M W, Goon A A. Dynamic focusing in head-mounted displays[J]. Proceedings of SPIE, 3639, 463-470(1999).

    [112] Schowengerdt B T, Lin D M, St Hilaire P. Multi-layer diffractive eyepiece[P].

    [113] Shen F Q, Yang L, She J et al. Tailoring freeform beam-shaping lenses for edge-emitting lasers[J]. Optics and Lasers in Engineering, 167, 107603(2023).

    [114] Yang L, Shen F Q, Ding Z H et al. Freeform optical design of beam shaping systems with variable illumination properties[J]. Optics Express, 29, 31993-32005(2021).

    [115] Liu Z W, Yang L, Yang Y B et al. Improved optical camera communication systems using a freeform lens[J]. Optics Express, 29, 34066-34076(2021).

    [116] Yang L, Liu Y L, Ding Z H et al. Design of freeform lenses for illuminating hard-to-reach areas through a light-guiding system[J]. Optics Express, 28, 38155-38168(2020).

    [117] Shu T, Hu G Y, Wu R M et al. Compact full-color augmented reality near-eye display using freeform optics and a holographic optical combiner[J]. Optics Express, 30, 31714-31727(2022).

    [118] Cheng D W, Wang Q F, Wang Y T et al. Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms[J]. Chinese Optics Letters, 11, 31201-31204(2013).

    [119] Shi J C, Qiao W, Hua J Y et al. Spatial multiplexing holographic combiner for glasses-free augmented reality[J]. Nanophotonics, 9, 3003-3010(2020).

    [120] Piao J A, Li G, Piao M L et al. Full color holographic optical element fabrication for waveguide-type head mounted display using photopolymer[J]. Journal of the Optical Society of Korea, 17, 242-248(2013).

    [121] Liu S X, Li Y, Su Y K. Multiplane displays based on liquid crystals for AR applications[J]. Journal of the Society for Information Display, 28, 224-240(2020).

    [122] Liu S X, Li Y, Su Y K. Review on multi-plane augmented reality display based on liquid crystal scattering films[J]. Chinese Journal of Liquid Crystals and Displays, 35, 725-732(2020).

    [123] Liu S X, Li Y, Li X et al. 3-1: a multi-plane volumetric optical see-through head mounted 3D display[J]. SID Symposium Digest of Technical Papers, 47, 1-3(2016).

    [124] Liu S X, Li Y, Zhou P C et al. A multi-plane optical see-through head mounted display design for augmented reality applications[J]. Journal of the Society for Information Display, 24, 246-251(2016).

    [125] Cui W, Gao L A. Optical mapping near-eye three-dimensional display with correct focus cues[J]. Optics Letters, 42, 2475-2478(2017).

    [126] Su Y F, Cai Z J, Shi L Y et al. A multi-plane optical see-through holographic three-dimensional display for augmented reality applications[J]. Optik, 157, 190-196(2018).

    [127] Lee C K, Moon S, Lee S et al. Compact three-dimensional head-mounted display system with Savart plate[J]. Optics Express, 24, 19531-19544(2016).

    [128] Tan G J, Zhan T, Lee Y H et al. Polarization-multiplexed multiplane display[J]. Optics Letters, 43, 5651-5654(2018).

    [129] Matsuda N, Fix A, Lanman D. Focal surface displays[J]. ACM Transactions on Graphics, 36, 86.

    [130] Zhan T, Lee Y H, Wu S T. High-resolution additive light field near-eye display by switchable Pancharatnam–Berry phase lenses[J]. Optics Express, 26, 4863-4872(2018).

    [131] Rolland J P, Krueger M W, Goon A. Multifocal planes head-mounted displays[J]. Applied Optics, 39, 3209-3215(2000).

    [132] MacKenzie K J, Hoffman D M, Watt S J. Accommodation to multiple-focal-plane displays: implications for improving stereoscopic displays and for accommodation control[J]. Journal of Vision, 10, 22(2010).

    [133] Hu X D, Hua H. Design and assessment of a depth-fused multi-focal-plane display prototype[J]. Journal of Display Technology, 10, 308-316(2014).

    [134] Rathinavel K, Wang H P, Blate A et al. An extended depth-at-field volumetric near-eye augmented reality display[J]. IEEE Transactions on Visualization and Computer Graphics, 24, 2857-2866(2018).

    [136] Shiwa S, Omura K, Kishino F. Proposal for a 3-D display with accommodative compensation: 3DDAC[J]. Journal of the Society for Information Display, 4, 255-261(1996).

    [137] Yanagisawa N, Kim K T, Son J Y et al. Focus-distance-controlled 3D TV[J]. Proceedings of SPIE, 3012, 256-261(1997).

    [138] Sugihara T, Miyasato T. System development of fatigue-less HMD system 3DDAC (3D display with accommodative compensation: system implementation of Mk. 4 in light-weight HMD[J]. ITE Technical Report, 22, 33-36(1998).

    [139] Lockhart T E, Shi W. Effects of age on dynamic accommodation[J]. Ergonomics, 53, 892-903(2010).

    [140] Stevens R E, Rhodes D P, Hasnain A et al. Varifocal technologies providing prescription and VAC mitigation in HMDs using Alvarez lenses[J]. Proceedings of SPIE, 10676, 106760J(2018).

    [141] Cheng D W, Chen H L, Wang Y T et al. Mathematical description and design methods of complex optical surfaces[J]. Acta Optica Sinica, 43, 0822008(2023).

    [142] Lin Y H, Huang T W, Huang H H et al. Liquid crystal lens set in augmented reality systems and virtual reality systems for rapidly varifocal images and vision correction[J]. Optics Express, 30, 22768-22778(2022).

    [143] Rolland J P, Hua H. Head-mounted display systems[J]. Encyclopedia of Optical Engineering, 2, 1-14(2005).

    [144] McQuaide S C, Seibel E J, Kelly J P et al. A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror[J]. Displays, 24, 65-72(2003).

    [145] Schowengerdt B T, Seibel E J, Kelly J P et al. Binocular retinal scanning laser display with integrated focus cues for ocular accommodation[J]. Proceedings of SPIE, 5006, 1-9(2003).

    [146] Hu X D, Hua H. High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics[J]. Optics Express, 22, 13896-13903(2014).

    [147] Zhan T, Zou J Y, Lu M et al. Wavelength-multiplexed multifocal displays[J]. Proceedings of SPIE, 11304, 1130408(2020).

    [148] Lanman D, Luebke D. Near-eye light field displays[J]. ACM Transactions on Graphics, 32, 220.

    [149] Zhu L M, Du G, Lü G Q et al. Performance improvement for compressive light field display with multi-plane projection[J]. Optics and Lasers in Engineering, 142, 106609(2021).

    [150] Wetzstein G, Lanman D, Hirsch M et al. Compressive light field displays[J]. IEEE Computer Graphics and Applications, 32, 6-11(2012).

    [151] Lee S, Jang C, Moon S et al. Additive light field displays: realization of augmented reality with holographic optical elements[J]. ACM Transactions on Graphics, 35, 60.

    [152] Teng D D, Lai C L, Song Q et al. Super multi-view near-eye virtual reality with directional backlights from wave-guides[J]. Optics Express, 31, 1721-1736(2023).

    [153] Wang P R, Sang X Z, Yu X B et al. Demonstration of a low-crosstalk super multi-view light field display with natural depth cues and smooth motion parallax[J]. Optics Express, 27, 34442-34453(2019).

    [154] Xing S J, Cao L C, Sang X Z et al. Overview of virtual stereo content generation technology for super multi-view light field[J]. Chinese Journal of Lasers, 48, 1509001(2021).

    [155] Deng H, Wang Q H, Xiong Z L et al. Magnified augmented reality 3D display based on integral imaging[J]. Optik, 127, 4250-4253(2016).

    [156] Shen X, Javidi B. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens[J]. Applied Optics, 57, B184-B189(2018).

    [157] Qin Z, Chou P Y, Wu J Y et al. Resolution-enhanced light field displays by recombining subpixels across elemental images[J]. Optics Letters, 44, 2438-2441(2019).

    [158] Watanabe H, Omura T, Okaichi N et al. Full-parallax three-dimensional display based on light field reproduction[J]. Optical Review, 29, 366-374(2022).

    [159] Huang F C, Luebke D, Wetzstein G. The light field stereoscope[C](2015).

    [160] Wang L, Li Y, Liu S X et al. 42.6: Maxwellian-viewing-super-multi-view near eye display using a Pancharatnam-Berry optical element[J]. SID Symposium Digest of Technical Papers, 52, 533-536(2021).

    [161] Takaki Y, Tanaka K, Nakamura J. Super multi-view display with a lower resolution flat-panel display[J]. Optics Express, 19, 4129-4139(2011).

    [162] Yang X, Jiao S M, Song Q et al. Computer generated phase-only rainbow holographic near-eye display[J]. Acta Optica Sinica, 41, 2209001(2021).

    [163] Amako J, Miura H, Sonehara T. Wave-front control using liquid-crystal devices[J]. Applied Optics, 32, 4323-4329(1993).

    [164] Roberge D, Neto L G, Sheng Y L. Full-complex modulation spatial light modulator using two coupled-mode modulation liquid crystal televisions[J]. Proceedings of SPIE, 2490, 407-415(1995).

    [165] Hsieh M L, Chen M L, Cheng C J. Improvement of the complex modulated characteristic of cascaded liquid crystal spatial light modulators by using a novel amplitude compensated technique[J]. Optical Engineering, 46, 070501(2007).

    [166] Gregory D A, Kirsch J C, Tam E C. Full complex modulation using liquid-crystal televisions[J]. Applied Optics, 31, 163-165(1992).

    [167] Chen J S, Chu D P. Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications[J]. Optics Express, 23, 18143-18155(2015).

    [168] Liu K X, Wu J C, He Z H et al. Progress of learning-based computer-generated holography[J]. Chinese Journal of Liquid Crystals and Displays, 38, 819-828, 690(2023).

    [169] Qin Z, Wu J Y, Chou P Y et al. Revelation and addressing of accommodation shifts in microlens array-based 3D near-eye light field displays[J]. Optics Letters, 45, 228-231(2019).

    [170] Xia X X, Guan Y Q, State A et al. Towards eyeglass-style holographic near-eye displays with statically[C], 312-319(2020).

    [171] Boo H, Lee Y S, Yang H B et al. Metasurface wavefront control for high-performance user-natural augmented reality waveguide glasses[J]. Scientific Reports, 12, 5832(2022).

    Tools

    Get Citation

    Copy Citation Text

    Shulong Wang, Zijian Lin, Shixiang Xu, Yu Wang, Kun Yang, Yidan Huang, Enguo Chen. Research Progress of Vergence-Accommodation Conflict in Near-Eye Display Based on Augmented Reality[J]. Acta Optica Sinica, 2023, 43(23): 2300001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: May. 31, 2023

    Accepted: Aug. 2, 2023

    Published Online: Dec. 12, 2023

    The Author Email: Xu Shixiang (shxxu@szu.edu.cn), Chen Enguo (ceg@fzu.edu.cn)

    DOI:10.3788/AOS231074

    Topics