Journal of the Chinese Ceramic Society, Volume. 51, Issue 2, 544(2023)

Progress on Active Learning Assisted Materials Discovery

WANG Yunfan1,*... TIAN Yuan2, ZHOU Yumei1 and XUE Dezhen1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(30)

    [1] [1] CORREA-BAENA J P, HIPPALGAONKAR K, DUREN J, et al. Accelerating materials development via automation, machine learning, and high-performance computing[J]. Joule, 2018(2): 1410-1420.

    [2] [2] National Science and Technology Council, Committee on Technoogy and Subcommittee on the MGI Initiative. Materials Genome Initiative-Strategic Plan[EB/OL]. (2014). https://www.mgi.gov/sites/. default/files/documents/mgi_strategic_plan_dec_2014.pdf

    [3] [3] LOOKMAN T, BALACHANDRAN P V, XUE D Z, et al. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design[J]. NPJ Comput Mater, 2019, 5: 21.

    [4] [4] LOOKMAN T, BALACHANDRAN P V, XUE D Z, et al. Statistical inference and adaptive design for materials discovery[J]. Curr Opin Solid State Mater Sci, 2017, 21: 121-128.

    [5] [5] WENG B C, SONG Z L, ZHU R L, et al. Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts[J]. Nat Commun, 2020, 11: 3513.

    [6] [6] BACK S, TRAN K, ULISSI Z W. Toward a design of active oxygen evolution catalysts: insights from automated density functional theory calculations and machine learning[J]. ACS Catal, 2019, 9: 7651-7659.

    [7] [7] XUE D Z, BALACHANDRAN P V, HOGDEN J, et al. Accelerated search for materials with targeted properties by adaptive design[J]. Nat Commun, 2016, 7: 1124.

    [8] [8] COX D D, JOHN S. A statistical method for global optimization[C]// IEEE International Conference on Systems, Man, and Cybernetics, Chicago, IL, USA, 1992: 1241-1246.

    [9] [9] JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. J Glob Optim, 1998, 13: 455-492.

    [10] [10] TIAN Y, YUAN R H, XUE D Z, et al. Role of uncertainty estimation in accelerating materials development via active learning[J]. J Appl Phys, 2020, 128(1): 014103.

    [11] [11] SEXTON J, LAAKE P. Standard errors for bagged and random forest estimators[J]. Comput Stat Data Anal, 2009, 53(3): 801?811.

    [12] [12] EFRON B, STEIN C. The jackknife estimate of variance[J]. Ann Stat, 1981, 9(3): 586?596.

    [13] [13] WAGER S, HASTIE T, EFRON B, Confidence intervals for random forests: the jackknife and the infinitesimal jackknife[J]. J Mach Learn Res, 2014, 15(1): 1625?1651.

    [14] [14] FLORES R A, PAOLUCCI C, WINTHER K T, et al. Active learning accelerated discovery of stable iridium oxide polymorphs for the oxygen evolution reaction[J]. Chem Mater, 2020, 32(13): 5854?5863.

    [15] [15] MEKKI-BERRADA F, REN Z K, HUANG T, et al. Two-step machine learning enables optimized nanoparticle synthesis[J]. NPJ Comput Mater, 2021, 7:55.

    [16] [16] YU M T, YANG S Y, WU C Z, et al. Machine learning the Hubbard U parameter in DFT+U using Bayesian optimization[J]. NPJ Comput Mater, 2020, 6: 180.

    [17] [17] YUAN R H, LIU Z, BALACHANDRAN P V, et al. Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning[J]. Adv Mater , 2018, 30(7): 1702884.

    [18] [18] GOPAKUMAR A M, BALACHANDRAN P V, XUE D Z, et al. Multi-objective optimization for materials discovery via adaptive design[J], Sci Rep, 2018, 8(1): 3738.

    [20] [20] EMMERICH M T M, GIANNAKOGLOU K C, NAUJOKS B, Single-and multiobjective evolutionary optimization assisted by Gaussian random field metamodels[J]. IEEE Trans Evol Comput, 2006, 10(4): 421?439.

    [21] [21] HARADA M, TAKEDA H, SUZUKI S, et al. Bayesian-optimization-guided experimental search of NASICON-type solid electrolytes for all-solid-state Li-ion batteries[J]. J Mater Chem A, 2020, 8: 15103-15109.

    [22] [22] WANG Y Q, IYER A, CHEN W, et al. Featureless adaptive optimization accelerates functional electronic materials design[J]. Appl Phys Rev, 2020, 7: 041403

    [23] [23] BAUTISTA D C T, A sequential design for approximating the Pareto front using the expected pareto improvement function[D]. The Ohio State University, 2009.

    [24] [24] KEANE A J. Statistical improvement criteria for use in multiobjective design optimization[J]. AIAA J, 2006, 44(4): 879-891.

    [25] [25] VALLADARES H, LI T Y, ZHU L K, et al. Gaussian process-based prognostics of lithium-ion batteries and design optimization of cathode active materials[J]. J Power Sources, 2022, 528: 231026.

    [26] [26] TIAN Y, XUE D Z, YUAN R H, et al. Efficient estimation of material property curves and surfaces via active learning[J]. Phys Rev Mater, 2021, 5: 013802.

    [27] [27] TIAN Y, YUAN R H, XUE D Z, et al. Determining multi-component phase diagrams with desired characteristics using active learning[J]. Adv. Sci, 2021, 8: 2003165.

    [28] [28] TERAYAMA K, TAMURA R, NOSE Y, et al. Efficient construction method for phase diagrams using uncertainty sampling[J]. Phys Rev Mater, 2019, 3: 033802

    [29] [29] ZHANG Y, WEN C, WANG C X, et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models[J]. Acta Mater, 2019, 185: 528-539.

    [30] [30] RAO Z Y, TUNG P, XIE R W, et al. Machine learning-enabled high-entropy alloy discovery[J]. Science, 2022, 378: 78-85.

    [31] [31] CHEN L Q, ZHAO Y H, From classical thermodynamics to phase-field method[J]. Prog Mater Sci, 2022, 124: 100868

    Tools

    Get Citation

    Copy Citation Text

    WANG Yunfan, TIAN Yuan, ZHOU Yumei, XUE Dezhen. Progress on Active Learning Assisted Materials Discovery[J]. Journal of the Chinese Ceramic Society, 2023, 51(2): 544

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Oct. 27, 2022

    Accepted: --

    Published Online: Mar. 11, 2023

    The Author Email: Yunfan WANG (wangyunfan@stu.xjtu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20220924

    Topics