Optics and Precision Engineering, Volume. 32, Issue 10, 1582(2024)
Underwater image enhancement synthesizing multi-scale information and attention mechanisms
[1] [1] 郭继昌, 李重仪, 郭春乐, 等. 水下图像增强和复原方法研究进展[J]. 中国图象图形学报, 2017, 22(3): 273-287. doi: 10.11834/jig.20170301GUOJ C, LIC Y, GUOC L, et al. Research progress of underwater image enhancement and restoration methods[J]. Journal of Image and Graphics, 2017, 22(3): 273-287.(in Chinese). doi: 10.11834/jig.20170301
[2] [2] 袁国铭, 杨光, 王金峰, 等. 由粗到细的多级小波变换水下图像增强[J]. 光学 精密工程, 2022, 30(22): 2939-2951. doi: 10.37188/ope.20223022.2939YUANG M, YANGG, WANGJ F, et al. Coarse-to-fine underwater image enhancement based on multi-level wavelet transform[J]. Opt. Precision Eng., 2022, 30(22): 2939-2951.(in Chinese). doi: 10.37188/ope.20223022.2939
[3] [3] 林森, 刘旭. 门控融合对抗网络的水下图像增强[J]. 图学学报, 2021, 42(6): 948-956. doi: 10.11996/JG.j.2095-302X.2021060948LINS, LIUX. Underwater image enhancement algorithm using gated fusion generative adversarial network[J]. Journal of Graphics, 2021, 42(6): 948-956.(in Chinese). doi: 10.11996/JG.j.2095-302X.2021060948
[4] [4] 王明军, 彭月, 刘燕荣, 等. 模拟水体湍流环境下目标激光点云数据的三维重建与分析[J]. 光电工程, 2023, 50(6): 230004.WANGM J, PENGY, LIUY R, et al. Three-dimensional reconstruction and analysis of target laser point cloud data in simulated turbulent water environment[J]. Opto-Electronic Engineering, 2023, 50(6): 230004.(in Chinese)
[5] A S A GHANI, N A M ISA. Enhancement of low quality underwater image through integrated global and local contrast correction. Applied Soft Computing, 37, 332-344(2015).
[6] [6] 胡振宇, 陈琦, 朱大奇. 基于颜色平衡和多尺度融合的水下图像增强[J]. 光学 精密工程, 2022, 30(17): 2133-2146. doi: 10.37188/OPE.20223017.2133HUZ Y, CHENQ, ZHUD Q. Underwater image enhancement based on color balance and multi-scale fusion[J]. Opt. Precision Eng., 2022, 30(17): 2133-2146.(in Chinese). doi: 10.37188/OPE.20223017.2133
[7] [7] 张楠楠, 李志伟, 郭新军, 等. 使用改进型大气散射模型的双阶段图像修复[J]. 光学 精密工程, 2022, 30(18): 2267-2279. doi: 10.37188/OPE.20223018.2267ZHANGN N, LIZ W, GUOX J, et al. Two-stage image restoration using improved atmospheric scattering model[J]. Opt. Precision Eng., 2022, 30(18): 2267-2279.(in Chinese). doi: 10.37188/OPE.20223018.2267
[8] [8] 丛润民, 张禹墨, 张晨, 等. 深度学习驱动的水下图像增强与复原研究进展[J]. 信号处理, 2020, 36(9): 1377-1389. doi: 10.16798/j.issn.1003-0530.2020.09.001CONGR M, ZHANGY M, ZHANGC, et al. Research progress of deep learning driven underwater image enhancement and restoration[J]. Journal of Signal Processing, 2020, 36(9): 1377-1389.(in Chinese). doi: 10.16798/j.issn.1003-0530.2020.09.001
[9] C FABBRI, M J ISLAM, J SATTAR. Enhancing underwater imagery using generative adversarial networks, 7159-7165(2018).
[10] J Y ZHU, T PARK, P ISOLA et al. Unpaired image-to-image translation using cycle-consistent adversarial networks, 2242-2251(2017).
[11] M J ISLAM, Y Y XIA, J SATTAR. Fast underwater image enhancement for improved visual perception. IEEE Robotics and Automation Letters, 5, 3227-3234(2020).
[12] C Y LI, S ANWAR, J H HOU et al. Underwater image enhancement via medium transmission-guided multi-color space embedding. IEEE Transactions on Image Processing, 30, 4985-5000(2021).
[13] Z Y MA. A wavelet-based dual-stream network for underwater image enhancement, 2769-2773(2022).
[14] Z Q FU, W WANG, Y HUANG et al. Uncertainty inspired underwater image enhancement, 465-482(2022).
[15] [15] 米泽田, 晋洁, 李圆圆, 等. 基于多尺度级联网络的水下图像增强方法[J]. 电子与信息学报, 2022, 44(10): 3353-3362. doi: 10.11999/JEIT220375MIZ T, JINJ, LIY Y, et al. Underwater image enhancement method based on multi-scale cascade network[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3353-3362.(in Chinese). doi: 10.11999/JEIT220375
[16] [16] 李云, 孙山林, 黄晴, 等. 基于多路混合注意力机制的水下图像增强网络[J]. 电子与信息学报, 2024, 46(1): 118-128. doi: 10.11999/JEIT230495LIY, SUNS L, HUANGQ, et al. Underwater image enhancement network based on multi-channel hybrid attention mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(1): 118-128.(in Chinese). doi: 10.11999/JEIT230495
[17] D H ZHANG, C Y WU, J C ZHOU et al. Hierarchical attention aggregation with multi-resolution feature learning for GAN-based underwater image enhancement. Engineering Applications of Artificial Intelligence, 125, 106743(2023).
[18] O RONNEBERGER, P FISCHER, T BROX. U-Net: convolutional networks for biomedical image segmentation. October 5, 234-241(9).
[19] Y KINOSHITA, H KIYA. Convolutional neural networks considering local and global features for image enhancement, 2110-2114(2019).
[20] J PARK, J Y LEE et al. CBAM: convolutional block attention module, 3-19(2018).
[21] P ISOLA, J Y ZHU, T H ZHOU et al. Image-to-image translation with conditional adversarial networks, 5967-5976(2017).
[22] Z L YI, H ZHANG, P TAN et al. DualGAN: unsupervised dual learning for image-to-image translation, 2868-2876(2017).
[23] [23] 范新南, 杨鑫, 史朋飞, 等. 特征融合生成对抗网络的水下图像增强[J]. 计算机辅助设计与图形学学报, 2022, 34(2): 264-272. doi: 10.3724/sp.j.1089.2022.18843FANX N, YANGX, SHIP F, et al. Underwater image enhancement based on feature fusion generative adversaral networks[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(2): 264-272.(in Chinese). doi: 10.3724/sp.j.1089.2022.18843
[24] Y WANG, W SONG, G FORTINO et al. An experimental-based review of image enhancement and image restoration methods for underwater imaging. IEEE Access, 7, 140233-140251(2019).
[25] Y T PENG, P C COSMAN. Underwater image restoration based on image blurriness and light absorption. IEEE Transactions on Image Processing, 26, 1579-1594(2017).
[26] K PANETTA, C GAO, S AGAIAN. Human-visual-system-inspired underwater image quality measures. IEEE Journal of Oceanic Engineering, 41, 541-551(2016).
[27] A MITTAL, R SOUNDARARAJAN, A C BOVIK. Making a “completely blind” image quality analyzer. IEEE Signal Processing Letters, 20, 209-212(2013).
[28] K HU, C H WENG, Y W ZHANG et al. An overview of underwater vision enhancement: from traditional methods to recent deep learning. Journal of Marine Science and Engineering, 10, 241(2022).
[29] [29] 王欣, 石慧. DRHA-UIE:基于双重残差混合注意力模块的水下图像增强方法[J]. 电子学报, 2023, 51(9): 2398-2407. doi: 10.12263/DZXB.20211619WANGX, SHIH. DRHA-UIE: an underwater image enhancement method based on dual residual hybrid attention block[J]. Acta Electronica Sinica, 2023, 51(9): 2398-2407.(in Chinese). doi: 10.12263/DZXB.20211619
[30] W H ZHOU, D M ZHU, M SHI et al. Deep images enhancement for turbid underwater images based on unsupervised learning. Computers and Electronics in Agriculture, 202, 107372(2022).
[31] T H WANG, L L WANG, E ZHANG et al. Underwater image enhancement based on optimal contrast and attenuation difference. IEEE Access, 11, 68538-68549(2023).
[32] [32] 巩文哲, 褚金奎, 成昊远, 等. 基于无监督学习和注意力机制的水下偏振图像融合[J]. 光学 精密工程, 2023, 31(21): 3212-3220. doi: 10.37188/OPE.20233121.3212GONGW Z, CHUJ K, CHENGH Y, et al. Underwater polarization image fusion based on unsupervised learning and attention mechanisms[J]. Opt. Precision Eng., 2023, 31(21): 3212-3220.(in Chinese). doi: 10.37188/OPE.20233121.3212
Get Citation
Copy Citation Text
Xiaohua XIA, Yuquan ZHONG, Peng HU, Yunshi YAO, Jiguang GENG, Liangqi ZHANG. Underwater image enhancement synthesizing multi-scale information and attention mechanisms[J]. Optics and Precision Engineering, 2024, 32(10): 1582
Category:
Received: Dec. 14, 2023
Accepted: --
Published Online: Jul. 8, 2024
The Author Email: XIA Xiaohua (xhxia@chd.edu.cn)