Journal of the Chinese Ceramic Society, Volume. 51, Issue 9, 2271(2023)
Research Progress of Optoelectronic Devices Based on All-Inorganic Halide Double Perovskite Materials
[1] [1] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc, 2009, 131(17): 6050-6051.
[2] [2] PARK J, KIM J, YUN H S, et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides[J]. Nature, 2023, 616(7958): 724-730.
[3] [3] HU M Y, WANG G P, ZHANG Q H, et al. Antioxidative solution processing yields exceptional Sn(II) stability for sub-1.4eV bandgap inorganic perovskite solar cells[J]. J Energy Chem, 2022, 72: 487-494.
[4] [4] LI M, LI F M, GONG J, et al. Advances in tin(II)-based perovskite solar cells: from material physics to device performance[J]. Small Struct, 2022, 3(1): 2100102.
[5] [5] LI J M, CAO H L, JIAO W B, et al. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold[J]. Nat Commun, 2020, 11(1): 310.
[6] [6] HAO F, STOUMPOS C C, CAO D H, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nat Photonics, 2014, 8(6): 489-494.
[7] [7] YANG S D, FU W F, ZHANG Z Q, et al. Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite[J]. J Mater Chem A, 2017, 5(23): 11462-11482.
[8] [8] FILIP M R, LIU X L, MIGLIO A, et al. Phase diagrams and stability of lead-free halide double perovskites Cs2BB’X6: B = Sb and Bi, B’ = Cu, Ag, and Au, and X = Cl, Br, and I[J]. J Phys Chem C, 2018, 122(1): 158-170.
[9] [9] XIANG H M, LIU P Y, WANG W, et al. Towards highly stable and efficient planar perovskite solar cells: Materials development, defect control and interfacial engineering[J]. Chem Eng J, 2021, 420: 127599.
[10] [10] CAI Y, XIE W, DING H, et al. Computational study of halide perovskite-derived A2BX6 inorganic compounds: chemical trends in electronic structure and structural stability[J]. Chem Mater, 2017, 29(18): 7740-7749.
[11] [11] JAIN A, VOZNYY O, SARGENT E H. High-throughput screening of lead-free perovskite-like materials for optoelectronic applications[J]. J Phys Chem C, 2017, 121(13): 7183-7187.
[12] [12] LEE B, STOUMPOS C C, ZHOU N J, et al. Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor[J]. J Am Chem Soc, 2014, 136(43): 15379-15385.
[13] [13] RAJ A, KUMAR M, ANSHUL A. Recent progress in cesium-based lead-free halide double perovskite materials for photovoltaic applications[J]. Phys Status Solidi A, 2022, 219(22): 2200425.
[14] [14] JI G Q, XIAO Z W. Jahn-teller distortion-stabilized halide double perovskites with unusual rock-salt-type ordering of divalent B-site cations[J]. Chem Mater, 2022, 34(18): 8207-8212.
[15] [15] HAN C Z, JI G Q, HU sanlue, et al. B-site columnar-ordered halide double perovskites A2B(II)’0.5B(II)X5 with B(II)’/vacancy disordering[J]. Chem Mater, 2021, 33(17): 7106-7112.
[16] [16] JI G Q, HAN C Z, HU sanlue, et al. B-site columnar-ordered halide double perovskites: theoretical design and experimental verification[J]. J Am Chem Soc, 2021, 143(27): 10275-10281.
[17] [17] YIN H, XIAN Y M, ZHANG Y L, et al. Structurally stabilizing and environment friendly triggers: Double-metallic lead-free perovskites[J]. Sol RRL, 2019, 3(9): 1900148.
[18] [18] MAUGHAN A E, GANOSE A M, SCANLON D O, et al. Perspectives and design principles of vacancy-ordered double perovskite halide semiconductors[J]. Chem Mater, 2019, 31(4): 1184-1195.
[19] [19] ZHAO X G, YANG D W, REN J C, et al. Rational design of halide double perovskites for optoelectronic applications[J]. Joule, 2018, 2(9): 1662-1673.
[20] [20] GOLDSCHMIDT V M. Die gesetze der krystallochemie[J]. Naturwissenschaften, 1926, 14(21): 477-485.
[21] [21] MANSER J S, CHRISTIANS J A, KAMAT P V. Intriguing optoelectronic properties of metal halide perovskites[J]. Chem Rev, 2016, 116(21): 12956-13008.
[22] [22] YIN W J, YANG J H, KANG J, et al. Halide perovskite materials for solar cells: a theoretical review[J]. J Mater Chem A, 2015, 3(17): 8926-8942.
[23] [23] ZHAO X G, YANG J H, FU Y H, et al. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation[J]. J Am Chem Soc, 2017, 139(7): 2630-2638.
[24] [24] DENG Z Y, WEI F X, SUN S J, et al. Exploring the properties of lead-free hybrid double perovskites using a combined computational-experimental approach[J]. J Mater Chem A, 2016, 4(31): 12025-12029.
[25] [25] MCCLURE E T, BALL M R, WINDL W, et al. Cs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors[J]. Chem Mater, 2016, 28(5): 1348-1354.
[26] [26] LI T S, ZHAO X G, YANG D W, et al. Intrinsic defect properties in halide double perovskites for optoelectronic applications[J]. Phys Rev Applied, 2018, 10(4): 041001.
[27] [27] BEKENSTEIN Y, DAHL J C, HUANG J M, et al. The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions[J]. Nano Lett, 2018, 18(6): 3502-3508.
[28] [28] CREUTZ S E, CRITES E N, DE SIENA M C, et al. Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: synthesis and anion exchange to access new materials[J]. Nano Lett, 2018, 18(2): 1118-1123.
[29] [29] ZHOU J, XIA Z G, MOLOKEEV M S, et al. Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs2AgInCl6[J]. J Mater Chem A, 2017, 5(29): 15031-15037.
[30] [30] VOLONAKIS G, HAGHIGHIRAD A A, MILOT R L, et al. Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap[J]. J Phys Chem Lett, 2017, 8(4): 772-778.
[31] [31] DENG W, DENG Z Y, HE J W, et al. Synthesis of Cs2AgSbCl6 and improved optoelectronic properties of Cs2AgSbCl6/TiO2 heterostructure driven by the interface effect for lead-free double perovskites solar cells[J]. Appl Phys Lett, 2017, 111(15): 151602.
[32] [32] WEI F X, DENG Z Y, SUN S J, et al. Enhanced visible light absorption for lead-free double perovskite Cs2AgSbBr6[J]. Chem Commun, 2019, 55(26): 3721-3724.
[33] [33] ZHAO S, YAMAMOTO K, IIKUBO S, et al. First-principles study of electronic and optical properties of lead-free double perovskites Cs2NaBX6 (B = Sb, Bi; X = Cl, Br, I)[J]. J Phys Chem Solids, 2018, 117: 117-121.
[34] [34] ZHANG C, GAO L G, TEO S, et al. Design of a novel and highly stable lead-free Cs2NaBiI6 double perovskite for photovoltaic application[J]. Sustainable Energy Fuels, 2018, 2(11): 2419-2428.
[36] [36] LU L, PAN X, LUO J H, et al. Recent advances and optoelectronic applications of lead-free halide double perovskites[J]. Chem Eur J, 2020, 26(71): 16975-16984.
[37] [37] XIAO Z W, MENG W W, WANG J B, et al. Thermodynamic stability and defect chemistry of bismuth-based lead-free double perovskites[J]. ChemSusChem, 2016, 9(18): 2628-2633.
[38] [38] LEI H W, HARDY D, GAO F. Lead-free double perovskite Cs2 AgBiBr6: fundamentals, applications, and perspectives[J]. Adv Funct Mater, 2021, 31(49): 2105898.
[39] [39] GIUSTINO F, SNAITH H J. Toward lead-free perovskite solar cells[J]. ACS Energy Lett, 2016, 1(6): 1233-1240.
[40] [40] FILIP M R, HILLMAN S, HAGHIGHIRAD A A, et al. Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment[J]. J Phys Chem Lett, 2016, 7(13): 2579-2585.
[42] [42] SLAVNEY A H, HU T, LINDENBERG A M, et al. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications[J]. J Am Chem Soc, 2016, 138(7): 2138-2141.
[43] [43] BARTESAGHI D, SLAVNEY A H, GLVEZ-RUEDA M C, et al. Charge carrier dynamics in Cs2AgBiBr6 double perovskite[J]. J Phys Chem C, 2018, 122(9): 4809-4816.
[44] [44] THI DAO LIEN T, DAI N T, THANH N T, et al. Tin fluoride assisted growth of air stable perovskite derivative Cs2SnI6 thin film as a hole transport layer[J]. Mater Res Express, 2019, 6(11): 116442.
[45] [45] FEDOROVSKIY A E, DRIGO N A, NAZEERUDDIN M K. The role of Goldschmidt’s tolerance factor in the formation of A2BX6Double halide perovskites and its optimal range[J]. Small Methods, 2020, 4(5): 1900426.
[46] [46] MAUGHAN A E, GANOSE A, BORDELON M, et al. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6[J]. J Am Chem Soc, 2016, 138(27): 8453-8464.
[47] [47] MAUGHAN A E, GANOSE A M, ALMAKER M A, et al. Tolerance factor and cooperative tilting effects in vacancy-ordered double perovskite halides[J]. Chem Mater, 2018, 30(11): 3909-3919.
[48] [48] XIAO Z W, ZHOU Y Y, HOSONO H, et al. Intrinsic defects in a photovoltaic perovskite variant Cs2SnI6[J]. Phys Chem Chem Phys, 2015, 17(29): 18900-18903.
[49] [49] KALTZOGLOU A, ANTONIADOU M, PERGANTI D, et al. Mixed-halide Cs2SnI3Br3 perovskite as low resistance hole-transporting material in dye-sensitized solar cells[J]. Electrochimica Acta, 2015, 184: 466-474.
[50] [50] TAN Z F, LI J H, ZHANG C, et al. Highly efficient blue-emitting Bi-doped Cs2 SnCl6 perovskite variant: photoluminescence induced by impurity doping[J]. Adv Funct Mater, 2018, 28(29): 1801131.
[51] [51] ZHOU P, CHEN H, CHAO Y G, et al. Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production[J]. Nat Commun, 2021, 12(1): 1-8.
[52] [52] WANG A F, YAN X X, ZHANG M, et al. Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process[J]. Chem Mater, 2016, 28(22): 8132-8140.
[53] [53] RAVI V K, SINGHAL N, NAG A. Initiation and future prospects of colloidal metal halide double-perovskite nanocrystals: Cs2AgBiX6 (X = Cl, Br, I)[J]. J Mater Chem A, 2018, 6(44): 21666-21675.
[54] [54] WANG F, HAN Y, LIM C S, et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping[J]. Nature, 2010, 463(7284): 1061-1065.
[55] [55] TAILOR N K, LISTORTI A, COLELLA S, et al. Lead-free halide double perovskites: fundamentals, challenges, and photovoltaics applications[J]. Adv Mater Technol, 2023, 8(1): 2200442.
[56] [56] GAO W Y, RAN C X, XI J, et al. High-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2% efficiency[J]. Chemphyschem, 2018, 19(14): 1696-1700.
[57] [57] YANG X Q, WANG W, RAN R, et al. Recent advances in Cs2AgBiBr6-based halide double perovskites as lead-free and inorganic light absorbers for perovskite solar cells[J]. Energy Fuels, 2020, 34(9): 10513-10528.
[58] [58] LI P Z, GAO W Y, RAN C X, et al. Post-treatment engineering of vacuum-deposited Cs2 NaBiI6 double perovskite film for enhanced photovoltaic performance[J]. Phys Status Solidi A, 2019, 216(23): 1900567.
[59] [59] GREUL E, PETRUS M, BINEK A, et al. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications[J]. J Mater Chem A, 2017, 5(37): 19972-19981.
[60] [60] WANG M, ZENG P, BAI S, et al. High-quality sequential-vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cells[J]. Sol RRL, 2018, 2(12): 1800217.
[61] [61] WANG M, ZENG P, WANG Z H, et al. Vapor-deposited Cs2AgBiCl6 double perovskite films toward highly selective and stable ultraviolet photodetector[J]. Adv Sci, 2020, 7(11): 1903662.
[62] [62] NING W H, WANG F, WU B, et al. Long electron-hole diffusion length in high-quality lead-free double perovskite films[J]. Adv Mater, 2018, 30(20): 1706246.
[63] [63] PANTALER M, CHO K T, QUELOZ V I E, et al. Hysteresis-free lead-free double-perovskite solar cells by interface engineering[J]. ACS Energy Lett, 2018, 3(8): 1781-1786.
[64] [64] LIU Y, ZHANG L, WANG M, et al. Bandgap-tunable double-perovskite thin films by solution processing[J]. Mater Today, 2019, 28: 25-30.
[65] [65] ZHANG Y N, SHAH T, DEEPAK F L, et al. Surface science and colloidal stability of double-perovskite Cs2AgBiBr6 nanocrystals and their superlattices[J]. Chem Mater, 2019, 31(19): 7962-7969.
[66] [66] IGBARI F, WANG R, WANG Z K, et al. Composition stoichiometry of Cs2AgBiBr6 films for highly efficient lead-free perovskite solar cells[J]. Nano Lett, 2019, 19(3): 2066-2073.
[67] [67] QIU X F, JIANG Y N, ZHANG H L, et al. Lead-free mesoscopic Cs2SnI6perovskite solar cells using different nanostructured ZnO nanorods as electron transport layers[J]. Phys Status Solidi RRL, 2016, 10(8): 587-591.
[68] [68] LEE B, KRENSELEWSKI A, BAIK S I, et al. Solution processing of air-stable molecular semiconducting iodosalts, Cs2SnI6-xBrx, for potential solar cell applications[J]. Sustainable Energy Fuels, 2017, 1(4): 710-724.
[69] [69] CHEN M, JU M G, CARL A D, et al. Cesium titanium(IV) bromide thin films based stable lead-free perovskite solar cells[J]. Joule, 2018, 2(3): 558-570.
[70] [70] ZHANG G Z, ZHANG J X, LIAO Y Y, et al. Cs2SnI6 nanocrystals enhancing hole extraction for efficient carbon-based CsPbI2Br perovskite solar cells[J]. Chem Eng J, 2022, 440: 135710.
[71] [71] BIBI A, LEE I, NAH Y, et al. Lead-free halide double perovskites: toward stable and sustainable optoelectronic devices[J]. Mater Today, 2021, 49: 123-144.
[72] [72] LEI L Z, SHI Z F, LI Y, et al. High-efficiency and air-stable photodetectors based on lead-free double perovskite Cs2AgBiBr6 thin films[J]. J Mater Chem C, 2018, 6(30): 7982-7988.
[73] [73] YANG J, BAO C X, NING W H, et al. Stable, high-sensitivity and fast-response photodetectors based on lead-free Cs2 AgBiBr6 double perovskite films[J]. Adv Opt Mater, 2019: 1801732.
[74] [74] PAN W C, WU H D, LUO J J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit[J]. Nat Photonics, 2017, 11(11): 726-732.
[75] [75] LI H R, SHAN X, NEU J N, et al. Lead-free halide double perovskite-polymer composites for flexible X-ray imaging[J]. J Mater Chem C, 2018, 6(44): 11961-11967.
[76] [76] TAILOR N K, GHOSH J, AFROZ M A, et al. Self-powered X-ray detection and imaging using Cs2AgBiCl6 lead-free double perovskite single crystal[J]. ACS Appl Electron Mater, 2022, 4(9): 4530-4539.
[77] [77] ZHU W J, MA W B, SU Y R, et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators[J]. Light Sci Appl, 2020, 9(1): 1-10.
[78] [78] DAHL J C, OSOWIECKI W T, CAI Y, et al. Probing the stability and band gaps of Cs2AgInCl6 and Cs2AgSbCl6 lead-free double perovskite nanocrystals[J]. Chem Mater, 2019, 31(9): 3134-3143.
[79] [79] NING W H, ZHAO X G, KLARBRING J, et al. Thermochromic lead-free halide double perovskites[J]. Adv Funct Mater, 2019, 29(10): 1807375.
[80] [80] YANG B, CHEN J S, YANG S Q, et al. Lead-free silver-bismuth halide double perovskite nanocrystals[J]. Angew Chem Int Ed, 2018, 57(19): 5359-5363.
[81] [81] YANG B, MAO X, HONG F, et al. Lead-free direct band gap double-perovskite nanocrystals with bright dual-color emission[J]. J Am Chem Soc, 2018, 140(49): 17001-17006.
[82] [82] LIU Z Y, SUN Y Y, CAI T, et al. Two-Dimensional Cs2AgInxBi1-xCl6 alloyed double perovskite nanoplatelets for solution-processed light-emitting diodes[J]. Adv Mater, 2023, 35(19): 2211235.
[83] [83] JIN S L, LI R F, HUANG H, et al. Compact ultrabroadband light-emitting diodes based on lanthanide-doped lead-free double perovskites[J]. Light Sci Appl, 2022, 11(1): 1-13.
[84] [84] GRAY M B, MAJHER J D, STROM T A, et al. Broadband white emission in Cs2AgIn1-xBixCl6 phosphors[J]. Inorg Chem, 2019, 58(19): 13403-13410.
[85] [85] LUO J J, WANG X M, LI S R, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites[J]. Nature, 2018, 563(7732): 541-545.
Get Citation
Copy Citation Text
GONG Jue, ZHANG Zhiyu, LI Faming, LIU Mingzhen. Research Progress of Optoelectronic Devices Based on All-Inorganic Halide Double Perovskite Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2271
Category:
Received: Apr. 11, 2023
Accepted: --
Published Online: Oct. 7, 2023
The Author Email:
CSTR:32186.14.