Laser & Optoelectronics Progress, Volume. 61, Issue 1, 0130002(2024)

Ultrafast Two-Dimensional Electronic Spectroscopy (Invited)

Changtao Xiao1, Yin Song1,2、*, and Weiqian Zhao1,2、**
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2MIIT Key Laboratory of Complex-Field Intelligent Exploration, Beijing Institute of Technology, Beijing 100081, China
  • show less
    References(71)

    [1] Maiuri M, Garavelli M, Cerullo G. Ultrafast spectroscopy: state of the art and open challenges[J]. Journal of the American Chemical Society, 142, 3-15(2020).

    [2] Jonas D M. Two-dimensional femtosecond spectroscopy[J]. Annual Review of Physical Chemistry, 54, 425-463(2003).

    [3] Biswas S, Kim J, Zhang X Z et al. Coherent two-dimensional and broadband electronic spectroscopies[J]. Chemical Reviews, 122, 4257-4321(2022).

    [4] Lewis K L M, Ogilvie J P. Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy[J]. The Journal of Physical Chemistry Letters, 3, 503-510(2012).

    [5] Hybl J D, Albrecht A W, Faeder S M G et al. Two-dimensional electronic spectroscopy[J]. Chemical Physics Letters, 297, 307-313(1998).

    [6] Bai X L, Huang Y J, Zou J D et al. The development of two-dimensional electronic spectroscopy[J]. Scientia Sinica Physica, Mechanica & Astronomica, 53, 284207(2023).

    [7] Smallwood C L, Cundiff S T. Multidimensional coherent spectroscopy of semiconductors[J]. Laser & Photonics Reviews, 12, 1800171(2018).

    [8] Engel G S, Calhoun T R, Read E L et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems[J]. Nature, 446, 782-786(2007).

    [9] Chenu A, Scholes G D. Coherence in energy transfer and photosynthesis[J]. Annual Review of Physical Chemistry, 66, 69-96(2015).

    [10] Fuller F D, Pan J, Gelzinis A et al. Vibronic coherence in oxygenic photosynthesis[J]. Nature Chemistry, 6, 706-711(2014).

    [11] Collini E, Wong C Y, Wilk K E et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature[J]. Nature, 463, 644-647(2010).

    [12] Cao J S, Cogdell R J, Coker D F et al. Quantum biology revisited[J]. Science Advances, 6, eaaz4888(2020).

    [13] Tiwari V, Peters W K, Jonas D M. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework[J]. Proceedings of the National Academy of Sciences of the United States of America, 110, 1203-1208(2013).

    [14] Song Y, Konar A, Sechrist R et al. Multispectral multidimensional spectrometer spanning the ultraviolet to the mid-infrared[J]. The Review of Scientific Instruments, 90, 013108(2019).

    [15] Zhu R D, Ruan M X, Li H et al. Vibrational and vibronic coherences in the energy transfer process of light-harvesting complex II revealed by two-dimensional electronic spectroscopy[J]. The Journal of Chemical Physics, 156, 125101(2022).

    [16] Zhu R D, Zou J D, Wang Z et al. Electronic state-resolved multimode-coupled vibrational wavepackets in oxazine 720 by two-dimensional electronic spectroscopy[J]. The Journal of Physical Chemistry A, 124, 9333-9342(2020).

    [17] Zhu R D, Yue S, Li H et al. Correction of spectral distortion in two-dimensional electronic spectroscopy arising from the wedge-based delay line[J]. Optics Express, 27, 15474-15484(2019).

    [18] Wang J P. Ultrafast two-dimensional infrared spectroscopy for molecular structures and dynamics with expanding wavelength range and increasing sensitivities: from experimental and computational perspectives[J]. International Reviews in Physical Chemistry, 36, 377-431(2017).

    [19] Fuller F D, Ogilvie J P. Experimental implementations of two-dimensional Fourier transform electronic spectroscopy[J]. Annual Review of Physical Chemistry, 66, 667-690(2015).

    [20] Weng Y X, Chen H L[M]. Ultrafast spectroscopy-principles and techniques(2013).

    [21] Song Y, Zhu R D, Yu S et al. Ultrafast two-dimensional electronic spectroscopy and excited-state dynamics(invited)[J]. Acta Photonica Sinica, 51, 0851511(2022).

    [22] Aue W P, Bartholdi E, Ernst R R. Two-dimensional spectroscopy. Application to nuclear magnetic resonance[J]. The Journal of Chemical Physics, 64, 2229-2246(1976).

    [23] Asplund M C, Zanni M T, Hochstrasser R M. Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes[J]. Proceedings of the National Academy of Sciences of the United States of America, 97, 8219-8224(2000).

    [24] Tekavec P F, Lott G A, Marcus A H. Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation[J]. The Journal of Chemical Physics, 127, 214307(2007).

    [25] Tseng C H, Matsika S, Weinacht T C. Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet[J]. Optics Express, 17, 18788-18793(2009).

    [26] Nardin G, Autry T M, Silverman K L et al. Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure[J]. Optics Express, 21, 28617-28627(2013).

    [27] Oliver T A A, Fleming G R. Following coupled electronic-nuclear motion through conical intersections in the ultrafast relaxation of β-apo-8'-carotenal[J]. The Journal of Physical Chemistry B, 119, 11428-11441(2015).

    [28] Courtney T L, Fox Z W, Slenkamp K M et al. Two-dimensional vibrational-electronic spectroscopy[J]. The Journal of Chemical Physics, 143, 154201(2015).

    [29] Tiwari V, Acosta Matutes Y, Gardiner A T et al. Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria[J]. Nature Communications, 9, 4219(2018).

    [30] Tian P F, Keusters D, Suzaki Y et al. Femtosecond phase-coherent two-dimensional spectroscopy[J]. Science, 300, 1553-1555(2003).

    [31] Cowan M L, Ogilvie J P, Miller R J D. Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes[J]. Chemical Physics Letters, 386, 184-189(2004).

    [32] Brixner T, Mancal T, Stiopkin I V et al. Phase-stabilized two-dimensional electronic spectroscopy[J]. The Journal of Chemical Physics, 121, 4221-4236(2004).

    [33] Grumstrup E M, Shim S H, Montgomery M A et al. Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping Technology[J]. Optics Express, 15, 16681-16689(2007).

    [34] Myers J A, Lewis K L M, Tekavec P F et al. Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper[J]. Optics Express, 16, 17420-17428(2008).

    [35] Zhang T H, Borca C N, Li X Q et al. Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization[J]. Optics Express, 13, 7432-7441(2005).

    [36] Gundogdu K, Stone K W, Turner D B et al. Multidimensional coherent spectroscopy made easy[J]. Chemical Physics, 341, 89-94(2007).

    [37] Augulis R, Zigmantas D. Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance[J]. Optics Express, 19, 13126-13133(2011).

    [38] Brida D, Manzoni C, Cerullo G. Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line[J]. Optics Letters, 37, 3027-3029(2012).

    [39] Harel E, Fidler A F, Engel G S. Single-shot gradient-assisted photon echo electronic spectroscopy[J]. The Journal of Physical Chemistry. A, 115, 3787-3796(2011).

    [40] Lomsadze B, Cundiff S T. Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy[J]. Science, 357, 1389-1391(2017).

    [41] Kearns N M, Mehlenbacher R D, Jones A C et al. Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz[J]. Optics Express, 25, 7869-7883(2017).

    [42] Agathangelou D, Javed A, Sessa F et al. Phase-modulated rapid-scanning fluorescence-detected two-dimensional electronic spectroscopy[J]. The Journal of Chemical Physics, 155, 094201(2021).

    [43] Réhault J, Maiuri M, Oriana A et al. Two-dimensional electronic spectroscopy with birefringent wedges[J]. The Review of Scientific Instruments, 85, 123107(2014).

    [44] Prokhorenko V I, Halpin A, Miller R J D. Coherently-controlled two-dimensional photon echo electronic spectroscopy[J]. Optics Express, 17, 9764-9779(2009).

    [45] Lomsadze B, Smith B C, Cundiff S T. Tri-comb spectroscopy[J]. Nature Photonics, 12, 676-680(2018).

    [46] Duchi M, Shukla S, Shalit A et al. 2D-Raman-THz spectroscopy with single-shot THz detection[J]. The Journal of Chemical Physics, 155, 174201(2021).

    [47] Loukianov A, Niedringhaus A, Berg B et al. Two-dimensional electronic stark spectroscopy[J]. The Journal of Physical Chemistry Letters, 8, 679-683(2017).

    [48] Karki K J, Widom J R, Seibt J et al. Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell[J]. Nature Communications, 5, 5869(2014).

    [49] Bolzonello L, Bernal-Texca F, Gerling L G et al. Photocurrent-detected 2D electronic spectroscopy reveals ultrafast hole transfer in operating PM6/Y6 organic solar cells[J]. The Journal of Physical Chemistry Letters, 12, 3983-3988(2021).

    [50] Lotti D, Hamm P, Kraack J P. Surface-sensitive spectro-electrochemistry using ultrafast 2D ATR IR spectroscopy[J]. The Journal of Physical Chemistry C, 120, 2883-2892(2016).

    [51] Zhang Z Y, Lambrev P H, Wells K L et al. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy[J]. Nature Communications, 6, 7914(2015).

    [52] Mueller S, Lüttig J, Malý P et al. Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways[J]. Nature Communications, 10, 4735(2019).

    [53] Song Y, Sechrist R, Nguyen H H et al. Excitonic structure and charge separation in the heliobacterial reaction center probed by multispectral multidimensional spectroscopy[J]. Nature Communications, 12, 2801(2021).

    [54] Niedringhaus A, Policht V R, Sechrist R et al. Primary processes in the bacterial reaction center probed by two-dimensional electronic spectroscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 3563-3568(2018).

    [55] Kubarych K J, Joffre M, Moore A et al. Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer[J]. Optics Letters, 30, 1228-1230(2005).

    [56] Scholes G D, Fleming G R, Chen L X et al. Using coherence to enhance function in chemical and biophysical systems[J]. Nature, 543, 647-656(2017).

    [57] Wasielewski M R, Forbes M D E, Frank N L et al. Exploiting chemistry and molecular systems for quantum information science[J]. Nature Reviews Chemistry, 4, 490-504(2020).

    [58] Brédas J L, Sargent E H, Scholes G D. Photovoltaic concepts inspired by coherence effects in photosynthetic systems[J]. Nature Materials, 16, 35-44(2017).

    [59] Thyrhaug E, Tempelaar R, Alcocer M J P et al. Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex[J]. Nature Chemistry, 10, 780-786(2018).

    [60] Song Y, Hellmann C, Stingelin N et al. The separation of vibrational coherence from ground- and excited-electronic states in P3HT film[J]. The Journal of Chemical Physics, 142, 212410(2015).

    [61] Sil S, Tilluck R W, Mohan T M N et al. Excitation energy transfer and vibronic coherence in intact phycobilisomes[J]. Nature Chemistry, 14, 1286-1294(2022).

    [62] Paulus B C, Adelman S L, Jamula L et al. Leveraging excited-state coherence for synthetic control of ultrafast dynamics[J]. Nature, 582, 214-218(2020).

    [63] Ribeiro R F, Martínez-Martínez L A, Du M et al. Polariton chemistry: controlling molecular dynamics with optical cavities[J]. Chemical Science, 9, 6325-6339(2018).

    [64] Xiang B, Ribeiro R F, Du M et al. Intermolecular vibrational energy transfer enabled by microcavity strong light-matter coupling[J]. Science, 368, 665-667(2020).

    [65] Chen T T, Du M, Yang Z M et al. Cavity-enabled enhancement of ultrafast intramolecular vibrational redistribution over pseudorotation[J]. Science, 378, 790-794(2022).

    [66] Fassioli F, Park K H, Bard S E et al. Femtosecond photophysics of molecular polaritons[J]. The Journal of Physical Chemistry Letters, 12, 11444-11459(2021).

    [67] Scholes G D, DelPo C A, Kudisch B. Entropy reorders polariton states[J]. The Journal of Physical Chemistry Letters, 11, 6389-6395(2020).

    [68] Duan R, Mastron J N, Song Y et al. Isolating polaritonic 2D-IR transmission spectra[J]. The Journal of Physical Chemistry Letters, 12, 11406-11414(2021).

    [69] Dunkelberger A D, Spann B T, Fears K P et al. Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons[J]. Nature Communications, 7, 13504(2016).

    [70] Son M, Armstrong Z T, Allen R T et al. Energy cascades in donor-acceptor exciton-polaritons observed by ultrafast two-dimensional white-light spectroscopy[J]. Nature Communications, 13, 7305(2022).

    [71] Wu F, Finkelstein-Shapiro D, Wang M et al. Optical cavity-mediated exciton dynamics in photosynthetic light harvesting 2 complexes[J]. Nature Communications, 13, 6864(2022).

    Tools

    Get Citation

    Copy Citation Text

    Changtao Xiao, Yin Song, Weiqian Zhao. Ultrafast Two-Dimensional Electronic Spectroscopy (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0130002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Nov. 20, 2023

    Accepted: Dec. 13, 2023

    Published Online: Feb. 21, 2024

    The Author Email: Song Yin (songyin2021@bit.edu.cn), Zhao Weiqian (zwq669@126.com)

    DOI:10.3788/LOP232753

    Topics