Acta Optica Sinica (Online), Volume. 2, Issue 1, 0102001(2025)

Multi-Dimensional Detectors Based on Novel Low-Dimensional Materials (Invited)

Jiayue Han1,2 and Jun Wang1,2、*
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan , China
  • 2State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan , China
  • show less
    Figures & Tables(13)
    Overview of multidimensional detectors, including intensity detectors[22-24] (upper left), phase angle detectors[25-27] (upper right), polarization detectors[28-30] (lower right), spectral detectors[31-33] (lower left), and multi-dimensional fusion detectors[34] (center)
    Intensity detectors. (a) Ta2NiSe5/WSe2 heterojunction tunneling photodetector[23]; (b) fitting curves of tunneling mechanism under light excitation[23]; (c) responsivity‒response time parameter characterization[23]; (d) schematic of photon multiplication in homojunctions and traditional bulk materials[44]; (e) I-V test curves of WSe2 homojunction[44]; (f) multiplication power and multiplication gain characterization[44]; (g) van der Waals single barrier detector structure[22]; (h) Arrhenius test diagram of single barrier device[22]; (i) I-V curves under different power[22]
    Phase angle detectors. (a) Multiplexed nanoring aperture[26]; (b) mode sorting[26]; (c) wavelength multiplexing[26]; (d) U-shaped electrode OAM detector[25]; (e) OAM circular polarization resolution[25]; (f) OAM mode resolution[25]; (g) schematic of spin Hall coupler structure[27]; (h) PTE bipolar control[27]; (i) OAM ellipticity discrimination[27]
    Polarization dimension detectors. (a) 2H ′-MoTe2/PVDF ferroelectric field-controlled devices[30]; (b) characterization of photocurrent from bulk photovoltaic effect[30]; (c) characterization of linear polarization detection[30]; (d) circular polarization photodetection and T-shaped ring device in Poincaré sphere[28]; (e) comparison between ring and rectangular devices[28]; (f) polarization photocurrent tested at different angles[28]; (g) four-pixel MoS2/metasurface compact polarization detector[29]; (h) four-pixel photoelectric conversion matrix[29]; (i) full-Stokes polarization state reconstruction on Poincaré sphere[29]
    Spectral detectors. (a) MoS2/WSe2 heterojunction band bending regulation spectrometer[31]; (b) spectral response characteristic matrix[31]; (c) comparison of resolution with commercial spectrometers[31];(d) ReSe2/SnS2 heterojunction spectral detector[32]; (e) spectral response characteristic matrix[32]; (f) characterization of heterojunction device spectral resolution[32]; (g) MoS2 electrostrictive effect spectral detector[33]; (h) fine spectral resolution of the device[33]
    New multi-dimensional fusion detectors.(a) Three-angle AsP multi-dimensional detector structure and multi-dimensional detection mechanism[83]; (b) three-terminal device multi-dimensional concentric ring response[83]; (c) power‒linear polarization multi-dimensional imaging application demonstration[83]; (d) angle graphene device structure[34]; (e) dual-gate controlled photocurrent contribution spectrum under spectral‒polarization response[34]; (f) decoding and restoring spectral‒polarization response through neural network learning[34]; (g) schematic of spectral‒polarization photodetector[84]; (h) complex spectral‒full-Stokes detection reconstruction effect[84]; (i) spectral‒full-Stokes multi-dimensional imaging application demonstration[84]
    Multi-dimensional photonic chip-on-chip. (a) Compact depth optical sensing technology[3]; (b) principle of multi-dimensional optical information reconstruction[3]; (c) schematic of multi-dimensional information visual processing chip[88]; (d) schematic of polarization dimension on-chip development structure[88]
    Future development and prospects of multi-dimensional detectors (physical mechanism, new device structure, and algorithm optimization)
    • Table 1. Parameter summary of intensity detectors

      View table
      View in Article

      Table 1. Parameter summary of intensity detectors

      StructureMechanismResponsivityResponse timeWavelengthRef.
      Ta2NiSe5/WSe2Photogating-tunneling7300 A/W1 μs1550 nm[23]
      BP/InSeBallistic avalanche3×104 (gain)150 μs4 μm[24]
      WSe2 homojunctionAvalanche4×102 (gain)10 μs637 nm[44]
      Graphene/MoS2/BPUnipolar barrier2 A/W20 μs3.8 μm[22]
      AsP/MoS2/BPAsymmetric unipolar barrier23.4 mA/W0.4 μs4.6 μm[46]
      BP/Bi2O2SeMomentum matching1.22 A/W118 μs2 μm[45]
      PdSe2PTE13 V/W50 μs4.6‒10.5 μm[48]
      SnSePTE0.47 V/W107 ms0.532‒13.2 μm[49]
    • Table 2. Parameter summary of phase angle detectors

      View table
      View in Article

      Table 2. Parameter summary of phase angle detectors

      StructureStrategyFunctionWavelengthRef.
      Concentric double nanoring slitsMultiplexingOAM 4 modes580‒700 nm[26]
      WTe2/U-shaped electrodeCurrent windingOAM detection1 μm[25]
      TaIrTe4/U-shaped electrodeCurrent winding/amplification of second-order responseOAM detection4 μm[57]
      PdSe2/spin Hall couplerPTE bipolar responseOAM chirality and ellipticity detection8 μm[27]
    • Table 3. Parameter summary of polarization detectors

      View table
      View in Article

      Table 3. Parameter summary of polarization detectors

      StructureWavelengthResponsivityFunctionExtinction ratioResponse timeRef.
      Te3 μm354 A/WLP9 (LP)62.7 μs[63]
      BP/MoS2/BP3.5 μm0.89 A/WLP100 (LP)3.7 μs[64]
      BP/PVDF1550 nm1.06 A/WLP288 (LP)361 μs[65]
      AsP/WS2/AsP4.6 μm100 V/WLP(LP)200 μs[70]
      Nb2GeTe4/MoS23.7‒11 μm1.59 mA/WLP-3.37, 48 (LP)253 μs[67]
      1T ′-MoTe2/WSe2635 nm0.212 A/WLP1→+∞/-∞→-1 (reconfigurable)117 μs[69]
      CdSb2Se3Br2/WSe2532 nmNALP1→+∞/-∞→-1 (reconfigurable)NA[68]
      Graphene/heterogeneous metasurface4 μm15.6 V/WLP1→+∞/-∞→-1 (reconfigurable)667 ns[66]
      2H ′-MoTe2/PVDF1550 nm20 mA/WLP1→+∞/-∞→-1 (reconfigurable)NA[30]
      Te10.6 μm130 μA/WCP~0.3 (CP)NA[74]
      Graphene/ring-distributed centrosymmetric metasurface4 μm98 V/WOnly CP84 (CP)886 ns[28]
      PdSe2/chiral metasurface7 μm3.6 V/WFull Stokes1→+∞/-∞→-1(LP, CP reconfigurable)76 μs[73]
      MoS2/4 pixel metasurface1.6 μm~100 μA/WFull Stokes100 (extinction ratio)19.5 μs[29]
    • Table 4. Parameter summary of spectral detectors

      View table
      View in Article

      Table 4. Parameter summary of spectral detectors

      StructureMechanismFootprint /(μm×μm)WavelengthResolutionRef.
      Quantum dotParticle size bandgap8500×6800380‒630 nm3.2 nm[77]
      CdSxSe1-x nanowirePixel bandgap50×1500‒600 nm7 nm[79]
      BPStark effect9×162‒9 μm40 nm[20]
      ReS2/Au nanoparticles/WSe2Interlayer exciton20×201150‒1470 nm20 nm[21]
      MoS2/WSe2Heterojunction band control22×8405‒845 nm3 nm[31]
      ReSe2/SnS2Heterojunction band control19×19400‒800 nm5 nm[32]
      BP/MoS2Band-to-band tunneling30×20500‒1600 nm2 nm[80]
      Semi-floating MoS2 homojunctionElectrostrictive effect20×25400‒860 nm1.2 nm[33]
    • Table 5. Parameter summary of multi-dimensional fusion detectors

      View table
      View in Article

      Table 5. Parameter summary of multi-dimensional fusion detectors

      StructureMulti-dimensional mechanismWavelengthIntensityPolarizationRef.
      Graphene/T-shaped metasurfaceBPVE√ (LP)[82]
      Twisted BP -Bi2Se3Schottky photon√ (LP or CP)[71]
      Double twisted BPPTE√ (LP)[83]
      Double twisted BPPTE√ (single point)[83]
      BP/MoS2/AsPAsymmetric unipolar barrier√ (spectrum)√ (LP)[86]
      Graphene/matesurfaceBPVE√ (spectrum)√ (Stokes)[87]
      Twisted grapheneTopological quantum states√ (spectrum)√ (Stokes)[34]
      Lens-film-CMOSDispersion distribution√ (spectrum)√ (Stokes)[84]
    Tools

    Get Citation

    Copy Citation Text

    Jiayue Han, Jun Wang. Multi-Dimensional Detectors Based on Novel Low-Dimensional Materials (Invited)[J]. Acta Optica Sinica (Online), 2025, 2(1): 0102001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Nov. 14, 2024

    Accepted: Dec. 3, 2024

    Published Online: Feb. 14, 2025

    The Author Email: Wang Jun (wjun@uestc.edu.cn)

    DOI:10.3788/AOSOL240463

    CSTR:32394.14.AOSOL240463

    Topics