Optics and Precision Engineering, Volume. 32, Issue 2, 268(2024)

Design of lightweight re-parameterized remote sensing image super-resolution network

Jianbing YI*, Junkuan CHEN, Feng CAO, Jun LI, and Weijia XIE
Author Affiliations
  • College of Information Engineering, Jiangxi University of Science and Technology, Ganzhou341000,China
  • show less
    Figures & Tables(20)
    Architecture of Re-parameterization residual feature network(ReRFN)
    Re-parameterization feature block(ReFB)
    Enhanced global context block(EGCB)
    Re-parameterization block(Reblock)
    Reconstruction results of Airplane91 at ×3 SR
    Reconstruction results of Runway at ×4 SR
    Results of ×4 super-resolution reconstruction for Img062 in Urban100
    Results of ×4 super-resolution reconstruction for Img092 in Urban100
    Visualization results of selected samples from the SIDD dataset by various algorithms
    • Table 1. Performance comparison of various algorithms in UC Merced test dataset

      View table
      View in Article

      Table 1. Performance comparison of various algorithms in UC Merced test dataset

      算法Scale参数量/KM-Adds/GPSNRSSIM
      Bicubic×2--30.760.878 9
      SC×2--32.770.916 6
      SRCNN×284.532.840.915 2
      FSRCNN×2170.333.180.919 6
      LGCNet×219312.733.480.923 5
      DCM×21 84230.233.650.927 4
      HSENet×25 28666.834.220.932 7
      CNT×23494.233.590.925 5
      ReFDN×2--34.060.930 4
      ReRFN×25328.134.330.932 7
      Bicubic×3--27.460.763 1
      SC×3--28.260.797 1
      SRCNN×384.528.660.803 8
      FSRCNN×3170.229.090.816 7
      LGCNet×319312.729.280.823 8
      DCM×32 25816.329.520.839 4
      HSENet×35 47030.830.000.842 0
      CNT×33492.629.440.831 9
      ReFDN×3--29.850.840 5
      ReRFN×35393.630.010.844 9
      Bicubic×4--25.650.672 5
      SC×4--26.510.715 2
      SRCNN×484.526.780.721 9
      FSRCNN×4170.126.930.726 7
      LGCNet×419312.727.020.733 3
      DCM×42 17513.027.220.752 8
      HSENet×45 43319.227.730.762 3
      CNT×43601.827.410.751 2
      ReFDN×43431.327.680.759 6
      ReRFN×45482.127.690.762 5
    • Table 2. PSNR values of 21 types of remote sensing scenes for each algorithm under ×3 SR

      View table
      View in Article

      Table 2. PSNR values of 21 types of remote sensing scenes for each algorithm under ×3 SR

      类别BicubicSCSRCNNFSRCNNLGCNetDCMHSENetCNTReRFN
      农业26.8627.2327.4727.6127.6629.0627.6431.7928.13
      机场26.7127.6728.2428.9829.1230.7730.0928.2230.16
      棒球场地33.3334.0634.3334.6434.7233.7635.0529.3735.16
      海滩36.1436.8737.0037.2137.3736.3837.6934.7337.68
      建筑25.0926.1126.8427.5027.8128.5128.9537.8928.91
      丛林25.2125.8226.1126.2126.3926.8126.7028.0126.74
      密集住宅25.7626.7527.4128.0228.2528.7929.2426.4229.19
      森林27.5328.0928.2428.3528.4428.1628.5928.4128.59
      高速公路27.3628.2828.6929.2729.5230.4530.6328.4330.58
      高尔夫球场35.2135.9236.1536.4336.5134.4336.6229.6736.75
      海港21.2522.1122.8223.2923.6326.5524.8836.2424.96
      路口26.4827.2022.6728.0628.2929.2829.2123.9929.19
      中型住宅区25.6826.5427.0627.5827.7627.2128.5528.4228.60
      移动房公园22.2523.2523.8924.3424.5926.0525.7027.8625.67
      立交桥24.5925.3025.6526.5326.5827.7728.2224.9928.08
      停车场21.7522.5923.1123.3423.6924.9524.6627.4824.69
      河流28.1228.7128.8929.0729.1228.8929.2223.6329.28
      跑道29.3030.2530.6131.0131.1532.5331.1529.0330.72
      稀疏住宅区28.3429.3329.4030.2330.5329.8131.6430.6831.66
      油田29.9730.8631.3331.9232.1729.0232.9531.1832.92
      网球场29.7530.6230.9831.3431.5830.7632.7132.4332.51
      平均值27.4628.2328.6629.0929.2829.5230.0029.4430.01
    • Table 3. Comparison of model performance of various algorithms under ×3 SR

      View table
      View in Article

      Table 3. Comparison of model performance of various algorithms under ×3 SR

      算法参数量/KM-Adds/G推理时间/sPSNR
      LGCNet19312.70.00429.28
      DCM2 25816.30.00329.52
      HSENet5 47030.80.05930.00
      CTN3492.60.01729.44
      ReRFN5393.60.01030.01
    • Table 4. Influence of ESA and EGCB on model performance

      View table
      View in Article

      Table 4. Influence of ESA and EGCB on model performance

      基本模块方法参数量/KM-adds/G

      PSNR/

      SSIM

      ReFB方法14861.9927.78/0.763 2
      方法25252.0627.86/0.766 7
      方法35092.0327.84/0.764 9
      方法45482.0927.90/0.766 9

      方法5

      (Ours)

      5482.0927.91/0.767 9
    • Table 5. Impact of channel compression Rate (r) of EGCB module on model performance

      View table
      View in Article

      Table 5. Impact of channel compression Rate (r) of EGCB module on model performance

      基本

      模块

      通道压缩倍数r参数量/KM-adds/GPSNR/SSIM
      EGCB15862.1227.87/0.766 1
      25482.0927.91/0.767 9
      35382.0827.90/0.767 0
      45352.0727.89/0.767 0
    • Table 6. Performance analysis of the re-parameterized structural branch module

      View table
      View in Article

      Table 6. Performance analysis of the re-parameterized structural branch module

      基本模块

      3×3

      卷积

      扩张和压缩卷积残差连接PSNR/SSIM
      Reblock1××27.81/0.764 2
      1×27.82/0.764 6
      1×27.86/0.765 9
      127.91/0.767 9
    • Table 7. Impact of the number of ReFB modules on model performance

      View table
      View in Article

      Table 7. Impact of the number of ReFB modules on model performance

      模块数量N参数量/KM-adds/GPSNR/SSIM
      ReFB43821.4627.85/0.764 9
      54661.7727.87/0.766 0
      65482.0927.91/0.767 9
      76322.4027.93/0.768 2
      87152.7027.89/0.766 2
    • Table 8. Impact of the number of stacked Reblock+GELU layers on model performance

      View table
      View in Article

      Table 8. Impact of the number of stacked Reblock+GELU layers on model performance

      基本模块堆叠层数N参数量/K

      M-adds

      /G

      PSNR/SSIM
      ReRLFB12780.9827.73/0.7 609
      24131.5327.84/0.7 649
      35482.0927.91/0.767 9
      46842.6427.93/0.768 6
      58193.2027.92/0.768 2
    • Table 9. Impact of the Multi-layer feature fusion module on model Performance

      View table
      View in Article

      Table 9. Impact of the Multi-layer feature fusion module on model Performance

      方法参数量/KM-adds/GPSNR/SSIM
      方法15342.0327.87/0.766 1
      方法25482.0927.91/0.767 9
    • Table 10. Performance comparison of various algorithms on benchmark dataset for ×2,×3, and ×4 SR

      View table
      View in Article

      Table 10. Performance comparison of various algorithms on benchmark dataset for ×2,×3, and ×4 SR

      算法尺度

      参数量

      /K

      M-Adds

      /G

      Set5

      PSNR/ SSIM

      Set14

      PSNR/ SSIM

      BSD100

      PSNR/ SSIM

      Urban100

      PSNR/ SSIM

      Manga109

      PSNR/ SSIM

      Bicubic×2--33.66/0.929 930.24/0.868 829.56/0.843 126.88/0.840 330.80/0.933 9
      SRCNN852.736.66/0.954 232.42/0.906 331.36/0,8 87929.50/0.894 635.60/0.966 3
      FSRCNN136.036.98/0.955 632.62/0.908 731.50/0.890 429.85/0.900 936.67/0.971 0
      CARN1 592222.837.76/0.959 033.52/0.916 632.09/0.897 831.92/0.925 638.36/0.976 5
      IMDN694158.838.00/0.960 533.63/0.917 732.19/0.899 632.17/0.928 338.88/0.977 4
      RFDN534120.938.05/0.960 633.68/0.918 432.16/0.899 432.12/0.927 838.88/0.977 3
      RLFN527116.138.07/0.960 733.72/0.918 732.22/0.900 032.33/0.929 938.89/0.977 3
      DARN589131.638.04/0.961 033.63/0.918 632.25/0.901 232.40/0.930 538.87/0.977 6
      ReRFN532113.838.10/0.960 833.71/0.919 232.23/0.900 232.38/0.930 138.91/0.977 1
      Bicubic×3--30.39/0.868 227.55/0.774 227.21/0.738 524.46/0.734 926.95/0.855 6
      SRCNN852.732.75/0.909 029.30/0.821 528.41/0.786 326.24/0.798 930.48/0.911 7
      FSRCNN135.033.18/0.914 029.37/0.824 028.53/0.791 026.43/0.808 031.10/0.921 0
      CARN1 592118.834.29/0.925 530.29/0.840 729.06/0.803 428.06/0.849 333.50/0.944 0
      IMDN70371.534.36/0.927 030.32/0.841 729.09/0.804 628.17/0.851 933.61/0.944 5
      RFDN54154.334.41/0.927 330.34/0.842 029.09/0.805 028.21/0.852 533.67/0.944 9
      DARN59658.434.48/0.928 630.41/0.844 329.15/0.807 628.38/0.857 033.76/0.945 7
      ReRFN53951.334.52/0.928 230.44/0.843 629.14/0.806 328.36/0.855 633.80/0.945 9
      Bicubic×4--28.42/0.810 426.00/0.702 725.96/0.667 523.14/0.657 724.89/0.786 6
      SRCNN5752.730.48/0.862 827.49/0.750 326.90/0.710 124.52/0.722 127.58/0.855 5
      FSRCNN134.630.72/0.866 027.61/0.755 026.98/0.715 024.62/0.728 027.90/0.861 0
      CARN1 59290.932.13/0.893 728.60/0.780 627.58/0.734 926.07/0.783 730.47/0.908 4
      IMDN71540.932.21/0.894 828.58/0.781 127.56/0.735 326.04/0.783 830.45/0.907 5
      RFDN55031.132.24/0.895 228.61/0.781 927.57/0.736 026.11/0.785 830.58/0.908 9
      RLFN54329.932.24/0.895 228.62/0.781 327.60/0.736 426.17/0.787 730.60/0.909 6
      DARN60632.932.24/0.896 328.64/0.783 027.61/0.739 026.25/0.791 330.64/0.910 5
      ReRFN54829.432.28/0.895 828.66/0.782 627.61/0.737 126.26/0.790 230.65/0.910 3
    • Table 11. Performance comparison of various algorithms on the SIDD test set

      View table
      View in Article

      Table 11. Performance comparison of various algorithms on the SIDD test set

      算法Params/MSIDD
      PSNRSSIM
      BM3D41-25.650.685
      KSVD42-26.880.842
      EPLL43-27.110.870
      CBDNet444.3430.780.754
      RIDNet451.4938.710.914
      CTN360.3338.800.916
      ReRFN0.5339.130.954
    Tools

    Get Citation

    Copy Citation Text

    Jianbing YI, Junkuan CHEN, Feng CAO, Jun LI, Weijia XIE. Design of lightweight re-parameterized remote sensing image super-resolution network[J]. Optics and Precision Engineering, 2024, 32(2): 268

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 5, 2023

    Accepted: --

    Published Online: Apr. 2, 2024

    The Author Email: YI Jianbing (yijianbing8@jxust.edu.cn)

    DOI:10.37188/OPE.20243202.0268

    Topics