Opto-Electronic Engineering, Volume. 51, Issue 6, 240093-1(2024)
LF-UMTI: unsupervised multi-exposure light field image fusion based on multi-scale spatial-angular interaction
[1] Cui Z L, Sheng H, Yang D et al. Light field depth estimation for non-lambertian objects via adaptive cross operator[J]. IEEE Trans Circuits Syst Video Technol, 34, 1199-1211(2024).
[2] Ma S, Wang N, Zhu L C et al. Light field depth estimation using weighted side window angular coherence[J]. Opto-Electron Eng, 48, 210405(2021).
[3] Wu D, Zhang X D, Fan Z G et al. Depth acquisition of noisy scene based on inline occlusion handling of light field[J]. Opto-Electron Eng, 48, 200422(2021).
[5] Han L, Zhong D W, Li L et al. Learning residual color for novel view synthesis[J]. IEEE Trans Image Process, 31, 2257-2267(2022).
[6] Xu F, Liu J H, Song Y M et al. Multi-exposure image fusion techniques: a comprehensive review[J]. Remote Sens, 14, 771(2022).
[7] Li S T, Kang X D, Hu J W. Image fusion with guided filtering[J]. IEEE Trans Image Process, 22, 2864-2875(2013).
[8] Liu Y, Wang Z F. Dense SIFT for ghost-free multi-exposure fusion[J]. J Visual Commun Image Represent, 31, 208-224(2015).
[10] Ulucan O, Ulucan D, Turkan M. Ghosting-free multi-exposure image fusion for static and dynamic scenes[J]. Signal Process, 202, 108774(2023).
[14] Yin J L, Chen B H, Peng Y T. Two exposure fusion using prior-aware generative adversarial network[J]. IEEE Trans Multimedia, 24, 2841-2851(2021).
[15] Xu H, Ma J Y, Zhang X P. MEF-GAN: multi-exposure image fusion via generative adversarial networks[J]. IEEE Trans Image Process, 29, 7203-7216(2020).
[16] Liu J Y, Wu G Y, Luan J S et al. HoLoCo: holistic and local contrastive learning network for multi-exposure image fusion[J]. Inf Fusion, 95, 237-249(2023).
[17] Liu J Y, Shang J J, Liu R S et al. Attention-guided global-local adversarial learning for detail-preserving multi-exposure image fusion[J]. IEEE Trans Circuits Syst Video Technol, 32, 5026-5040(2022).
[18] Chen Y Y, Jiang G Y, Yu M et al. Learning to simultaneously enhance field of view and dynamic range for light field imaging[J]. Inf Fusion, 91, 215-229(2023).
[20] Ma K D, Duanmu Z F, Zhu H W et al. Deep guided learning for fast multi-exposure image fusion[J]. IEEE Trans Image Process, 29, 2808-2819(2020).
[24] Zhang H, Ma J Y. IID-MEF: a multi-exposure fusion network based on intrinsic image decomposition[J]. Inf Fusion, 95, 326-340(2023).
[26] Xu H, Ma J Y, Jiang J J et al. U2Fusion: a unified unsupervised image fusion network[J]. IEEE Trans Pattern Anal Mach Intell, 44, 502-518(2022).
[29] Ma K D, Zeng K, Wang Z. Perceptual quality assessment for multi-exposure image fusion[J]. IEEE Trans Image Process, 24, 3345-3356(2015).
[30] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans Image Process, 13, 600-612(2004).
[31] Hossny M, Nahavandi S, Creighton D. Comments on ‘Information measure for performance of image fusion’[J]. Electron Lett, 44, 1066-1067(2008).
[33] Cui G M, Feng H J, Xu Z H et al. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition[J]. Opt Commun, 341, 199-209(2015).
[34] Xydeas C S, Petrovic V. Objective image fusion performance measure[J]. Electronics letters, 36, 308-309(2000).
[35] Rao Y J. In-fibre Bragg grating sensors[J]. Meas Sci Technol, 8, 355-375(1997).
[37] Chen H, Varshney P K. A human perception inspired quality metric for image fusion based on regional information[J]. Inf Fusion, 8, 193-207(2007).
Get Citation
Copy Citation Text
Yulong Li, Yeyao Chen, Yueli Cui, Mei Yu. LF-UMTI: unsupervised multi-exposure light field image fusion based on multi-scale spatial-angular interaction[J]. Opto-Electronic Engineering, 2024, 51(6): 240093-1
Category:
Received: Apr. 23, 2024
Accepted: Jun. 3, 2024
Published Online: Oct. 21, 2024
The Author Email: Mei Yu (郁梅)