Opto-Electronic Engineering, Volume. 51, Issue 6, 240093-1(2024)

LF-UMTI: unsupervised multi-exposure light field image fusion based on multi-scale spatial-angular interaction

Yulong Li1, Yeyao Chen1, Yueli Cui2, and Mei Yu1、*
Author Affiliations
  • 1Faculty of Information Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
  • 2School of Electronic and Information Engineering, Taizhou University, Taizhou, Zhejiang 318000, China
  • show less
    References(37)

    [1] Cui Z L, Sheng H, Yang D et al. Light field depth estimation for non-lambertian objects via adaptive cross operator[J]. IEEE Trans Circuits Syst Video Technol, 34, 1199-1211(2024).

    [2] Ma S, Wang N, Zhu L C et al. Light field depth estimation using weighted side window angular coherence[J]. Opto-Electron Eng, 48, 210405(2021).

    [3] Wu D, Zhang X D, Fan Z G et al. Depth acquisition of noisy scene based on inline occlusion handling of light field[J]. Opto-Electron Eng, 48, 200422(2021).

    [5] Han L, Zhong D W, Li L et al. Learning residual color for novel view synthesis[J]. IEEE Trans Image Process, 31, 2257-2267(2022).

    [6] Xu F, Liu J H, Song Y M et al. Multi-exposure image fusion techniques: a comprehensive review[J]. Remote Sens, 14, 771(2022).

    [7] Li S T, Kang X D, Hu J W. Image fusion with guided filtering[J]. IEEE Trans Image Process, 22, 2864-2875(2013).

    [8] Liu Y, Wang Z F. Dense SIFT for ghost-free multi-exposure fusion[J]. J Visual Commun Image Represent, 31, 208-224(2015).

    [10] Ulucan O, Ulucan D, Turkan M. Ghosting-free multi-exposure image fusion for static and dynamic scenes[J]. Signal Process, 202, 108774(2023).

    [14] Yin J L, Chen B H, Peng Y T. Two exposure fusion using prior-aware generative adversarial network[J]. IEEE Trans Multimedia, 24, 2841-2851(2021).

    [15] Xu H, Ma J Y, Zhang X P. MEF-GAN: multi-exposure image fusion via generative adversarial networks[J]. IEEE Trans Image Process, 29, 7203-7216(2020).

    [16] Liu J Y, Wu G Y, Luan J S et al. HoLoCo: holistic and local contrastive learning network for multi-exposure image fusion[J]. Inf Fusion, 95, 237-249(2023).

    [17] Liu J Y, Shang J J, Liu R S et al. Attention-guided global-local adversarial learning for detail-preserving multi-exposure image fusion[J]. IEEE Trans Circuits Syst Video Technol, 32, 5026-5040(2022).

    [18] Chen Y Y, Jiang G Y, Yu M et al. Learning to simultaneously enhance field of view and dynamic range for light field imaging[J]. Inf Fusion, 91, 215-229(2023).

    [20] Ma K D, Duanmu Z F, Zhu H W et al. Deep guided learning for fast multi-exposure image fusion[J]. IEEE Trans Image Process, 29, 2808-2819(2020).

    [24] Zhang H, Ma J Y. IID-MEF: a multi-exposure fusion network based on intrinsic image decomposition[J]. Inf Fusion, 95, 326-340(2023).

    [26] Xu H, Ma J Y, Jiang J J et al. U2Fusion: a unified unsupervised image fusion network[J]. IEEE Trans Pattern Anal Mach Intell, 44, 502-518(2022).

    [29] Ma K D, Zeng K, Wang Z. Perceptual quality assessment for multi-exposure image fusion[J]. IEEE Trans Image Process, 24, 3345-3356(2015).

    [30] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans Image Process, 13, 600-612(2004).

    [31] Hossny M, Nahavandi S, Creighton D. Comments on ‘Information measure for performance of image fusion’[J]. Electron Lett, 44, 1066-1067(2008).

    [33] Cui G M, Feng H J, Xu Z H et al. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition[J]. Opt Commun, 341, 199-209(2015).

    [34] Xydeas C S, Petrovic V. Objective image fusion performance measure[J]. Electronics letters, 36, 308-309(2000).

    [35] Rao Y J. In-fibre Bragg grating sensors[J]. Meas Sci Technol, 8, 355-375(1997).

    [37] Chen H, Varshney P K. A human perception inspired quality metric for image fusion based on regional information[J]. Inf Fusion, 8, 193-207(2007).

    Tools

    Get Citation

    Copy Citation Text

    Yulong Li, Yeyao Chen, Yueli Cui, Mei Yu. LF-UMTI: unsupervised multi-exposure light field image fusion based on multi-scale spatial-angular interaction[J]. Opto-Electronic Engineering, 2024, 51(6): 240093-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 23, 2024

    Accepted: Jun. 3, 2024

    Published Online: Oct. 21, 2024

    The Author Email: Mei Yu (郁梅)

    DOI:10.12086/oee.2024.240093

    Topics